Appendix G

Greenhouse Gases

Big Eddy- Knight CO_{2} Emissions for 6 months of Transmission Line Construction
Note: Only Vehicle round trips/day or 6 months and distance need to be changed to calculate emissions
CO_{2}

CO_{2}				CO_{2} Emissions in Metric tons Vehicle round trips/day
16	Distance (miles)	Miles/ 6 months	Gallons/year**	

*Gallons/year is calculated using a fuel economy factor of 5.8 mpg for heavy trucks (more than $26,000 \mathrm{lbs}$)
**CO CO_{2} Emission Factor for Diesel Fuel No 1 and $2=10.15 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{gallon}$

CH_{4}					
Vehicle round trips/day	Distance (miles)	Miles/year	Gallons/mile*	CH_{4} Emissions in Metric tons	CO2 $_{2}$ Emissions in Metric tons/year**
16	80	233,600	1,191	0.001	$\mathbf{0 . 0 3}$

*Gallons/mile is calculated using a CH_{4} emission factor of $0.0051 \mathrm{~g} / \mathrm{mi}$ for all model years of diesel heavy-duty vehicles
${ }^{* *} \mathrm{CO}_{2}$ equivalent conversion factor for CH_{4} is 21 GWP

NO_{2}					
Vehicle round trips/day	Distance (miles)	Miles/year	Gallons/mile*	CH_{4} Emissions in Metric tons	CO_{2} e Emissions in Metric tons/year**
16	80	233,600	1,121	0.001	0.35
				Total CO_{2} Emissions over one year of transmission line construction in metric tons/year	409.38

*Gallons/mile is calculated using a NO_{2} emission factor of $0.0048 \mathrm{~g} / \mathrm{mi}$ for all model years of diesel heavy-duty vehicles
${ }^{* *} \mathrm{CO}_{2}$ equivalent conversion factor for NO_{2} is 310 GWP

Big Eddy- Knight CO2 Emissions for 6 months for Operations and Maintenance

CO_{2}				
Vehicle round trips/year	Distance (miles)	Miles/year	Gallonslyear*	CO_{2} Emissions in Metric tons $\mathrm{CO}_{2} /$ year** $^{\text {* }}$
3	80	240	30	0.3
Helicopter round trips/year	Distance (miles)	Miles/year	Gallons/year***	CO_{2} Emissions in Metric tons $\mathrm{CO}_{2} /$ year****
2	60	120	44	0.4
			Total CO_{2}	0.7

*Gallons/year is calculated using a fuel economy factor of 8.0 mpg for medium trucks (more than $26,000 \mathrm{lbs}$)
${ }^{* *} \mathrm{CO}_{2}$ Emission Factor for Motor gasoline $=8.81 \mathrm{~kg} \mathrm{CO}_{2} /$ gallon
${ }^{* * *}$ Gallons/year is calculated using a fuel economy factor of 2.7 mpg (2.35 Nautical Miles/g) for a helicopter
${ }^{* * * *} \mathrm{CO}_{2}$ Emission Factor for Aviation gasoline $=8.32 \mathrm{~kg} \mathrm{CO}_{2} /$ gallon

CH_{4}					
Vehicle round trips/year	Distance (miles)	Miles/year	Gallons/mile*	CH_{4} Emissions in Metric tons	$\mathrm{CO}_{2} e$ Emissions in Metric tons/year**
3	80	240	0.24	0.000000	0.000005
Helicopter round trips/year	Distance (miles)	Gallons/year***	Gramslyear**** $\begin{array}{c}\mathrm{CH}_{4} \text { Emissions } \\ \text { Metric tons }\end{array}$		CO_{2} e Emissions in Metric tons/year**
2	60	44	313	0.0000	0.001
				Total CH_{4}	0.001005

*Gallons/mile is calculated using a CH_{4} emission factor of $0.0010 \mathrm{~g} / \mathrm{mi}$ for model years 1996-2004 diesel light trucks
${ }^{* *} \mathrm{CO}_{2}$ equivalent conversion factor for CH_{4} is 21 GWP
***Gallons used per year = miles per year/2.7 mpg for helicopter
****Grams/year is calculated using an emission factor of 7.04 grams/gallon fuel for aviation gasoline.

$\mathrm{N}_{2} \mathrm{O}$					
Vehicle round trips/year	Distance (miles)	Miles/year	Gallons/mile*	$\mathrm{N}_{2} \mathrm{O}$ Emissions in Metric tons	CO_{2} e Emissions in Metric tons/year**
3	160	480	0.72	0.000001	0.0002
Helicopter round tripslyear	Distance (miles)	Gallonslyear***	Grams/year****	$\mathrm{N}_{2} \mathrm{O}$ Emissions in Metric tons	CO_{2} e Emissions in Metric tons/year**
2	130	96	11	0.00010	0.030
				Total $\mathrm{N}_{2} \mathrm{O}$	0.0302
				Total CO_{2} Emissions over one year of transmission line operation and maintenance in metric tons/year	0.7312

*Gallons/mile is calculated using a $\mathrm{N}_{2} 0$ emission factor of $0.0015 \mathrm{~g} / \mathrm{mi}$ for model years 1996-2004 diesel light trucks
${ }^{* *} \mathrm{CO}_{2}$ equivalent conversion factor for NO_{2} is 310 GWP
${ }^{* * *}$ Gallons used per year $=$ miles per year/2.7 mpg for helicopter
****Grams/year is calculated using an emission factor of
0.11 grams/gallon fuel for aviation
gasoline.

The following table is a summary of unit conversions and assumptions required to calculate CO_{2} emissions associated with tree harvesting.

Coefficient	Unit	Source
300	Horse power	Assumed
2,545	(British thermal unit/hour)/horse power	---
2	hours/tree	Assumed
138,000	$\mathrm{BTU} /$ gallon-diesel	EPA 2005
10.1	$\mathrm{~kg}-\mathrm{CO}_{2 \text {-equiv/gallon-diesel }}$	EPA 2005
35%	Efficiency	Assumed

