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1. Introduction 

1.1. Purpose 
Verification by Energy Modeling Protocol (Energy Modeling Protocol) is one of the 
Measurement and Verification (M&V) protocols used by the Bonneville Power Administration 
(BPA). It is intended for measures involving equipment whose energy use is impacted by the 
measure(s) and also by multiple independent variables that are not affected by the measure. 
Modeling here refers to empirical models – that is, data-driven statistical or regression-based 
models – rather than engineering models of physical systems. The savings can be large or small. 
The protocol is appropriate for interactions between measures, but the ability to distinguish 
between savings for each measure is dependent upon the level of sub-metering and the types of 
measures.  

Energy Modeling Protocol is adherent with IPMVP Options B and C.P0F

1 

Originally developed in 2012, this Energy Modeling Protocol is one of ten documents produced 
by BPA to direct M&V activities; an overview of the ten documents is given in the Measurement 
and Verification (M&V) Protocol Selection Guide and Example M&V Plan (Selection Guide). 

The protocol describes procedures for collecting and preparing necessary baseline and post-
implementation data, and for developing appropriate empirical models that are used to calculate 
energy savings. 

Chapter 9 of this protocol provides full citations (and web locations, where applicable) of 
documents referenced. The document Glossary for M&V: Reference Guide defines terms used in 
the collection of BPA M&V protocols and guides. 

1.2. Protocols Version 2.0 
BPA revised the protocols described in this guide in 2018. BPA published the original 
documents in 2012 as Version 1.0. The current documents are Version 2.0.  

1.3. How is M&V Defined? 
BPA’s Implementation Manual (the IM) defines measurement and verification as “the process 
for quantifying savings delivered by an energy conservation measure (ECM) to demonstrate how 
much energy use was avoided. It enables the savings to be isolated and fairly evaluated.”P

 
1F

2
P The 

                                                 
1  International Performance Measurement and Verification Protocol. 
2  2017-2019 Implementation Manual, BPA, October 1, 2017. 

https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf  

https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf
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IM describes how M&V fits into the various activities it undertakes to “ensure the reliability of 
its energy savings achievements.” The IM also states: 

The Power Act specifically calls on BPA to pursue cost-effective energy efficiency that is 
“reliable and available at the time it is needed.”P2F

3
P […] Reliability varies by savings type: 

UES, custom projects and calculators.P3F

4,
4F

5
P Custom projects require site-specific 

Measurement and Verification (M&V) to support reliable estimates of savings. BPA 
M&V Protocols direct M&V activities and are the reference documents for reliable 
M&V. For UES measures and Savings Calculators, measure specification and savings 
estimates must be RTF approved or BPA-Qualified.P5F

6 

The Selection Guide includes a flow chart providing a decision tree for selecting the M&V 
protocol appropriate to a given custom project and addressing prescriptive projects using UES 
estimates and Savings Calculators.  

M&V is site-specific and required for stand-alone custom projects. BPA’s customers submit 
bundled custom projects (projects of similar measures conducted at multiple facilities) as either 
an M&V Custom Program or as an Evaluation Custom Program; the latter requires evaluation 
rather than the site-specific M&V that these protocols address. 

1.4. Background 
BPA contracted with a team led by kW Engineering, Inc. to assist the organization in revising the 
M&V protocols that were published in 2012 and used to assure reliable energy savings for the 
custom projects it accepts from its utility customers. The team conducted a detailed review and 
user assessment of the 2012 M&V Protocols and developed the revised version 2.0 under 
Contract Number 00077045. 

The kW Engineering team is comprised of: 

■ kW Engineering, Inc. (kW), led by David Jump, Ph.D., PE, CMVP 

■ Research into Action (RIA), led by Marjorie McRae, Ph.D. 

■ Demand Side Analytics (DSA), led by Jesse Smith 

                                                 
3  Power Act language summarized by BPA. 
4  UES stands for Unit Energy Savings and is discussed subsequently. In brief, it is a stipulated savings value 

that region’s program administrators have agreed to use for measures whose savings do not vary by site (for 
sites within a defined population). More specifically UES are specified by either the Regional Technical 
Forum – RTF (referred to as “RTF approved”) or unilaterally by BPA (referred to as BPA-Qualified). 
Similarly, Savings Calculators are RTF approved or BPA-Qualified. 

5  Calculators estimate savings that are a simple function of a single parameter, such as operating hours or run 
time. 

6  https://www.bpa.gov/EE/Policy/IManual/Documents/IM_2017_10-11-17.pdf, page 1. 
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BPA’s Todd Amundson, PE and CMVP, was project manager for the M&V protocol update 
work. The kW Engineering team compiled feedback from BPA and regional stakeholders, and 
the team’s own review to revise and update this 2018 Energy Modeling Protocol.P6F

7
P The kW 

Engineering team would also like to thank Gregory Brown of Brolte, LLC and Josh Rushton of 
Rushton Analytics for their input. 

                                                 
7  William Koran, formerly of QuEST, was the primary author of Version 1.0 of the Energy Modeling Protocol, 

under Todd Amundson’s direction and supported by other members of the protocol development team. 
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2. Overview of Method 

2.1. Description 
This Energy Modeling Protocol provides guidance to verify energy savings for energy 
conservation measures (ECMs) implemented in commercial buildings, industrial facilities, or 
their subsystems. This protocol is appropriate to verify savings for ECMs that deliver large 
savings through high impact single ECMs or multiple smaller impact ECMs distributed 
throughout a building or facility. Verifying savings from individual ECMs applied to single end 
uses or equipment is not a good application of this protocol. 

These methods are based on and extend the descriptions of the whole building method found in 
the International Performance Measurement and Verification Protocol (IPMVP) under Option C 
and in American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 
Guideline 14-2014, as well as a large volume of applied research extending back to the early 
1970s. This protocol extends the application of whole building energy modeling to smaller 
measurement boundaries around facility subsystems, such as chilled water systems, air handling 
systems, or industrial processes. Such applications are considered retrofit isolation methods 
under IPMVP Option B (All Parameter Measurement) or ASHRAE Guideline 14-2014.  

This protocol describes procedures for collecting and preparing necessary baseline and post-
installation data, and for developing appropriate empirical (that is, statistical or regression-based) 
models for use in calculating a project’s energy savings. The methods described here are useful 
when the expected savings are large in comparison with the uncertainty of the empirical energy 
model. This protocol expands on the guidelines for performing regression analysis provided in 
BPA’s Regression for M&V: Reference Guide,P7F

8
P with a focus on developing and validating 

energy models. 

The effect of selected independent variables on a building or subsystem’s energy use is modeled 
using statistical regression techniques. This enables the baseline energy use to be projected into 
or adjusted to conditions occurring in the post-installation period. Savings are then determined 
by subtraction of the adjusted baseline and measured post-installation energy usages. The 
savings may also be determined for conditions other than the post-installation period, such as to 
typical meteorological year (TMY) weather conditions. This requires a post-installation period 
energy model. 

With the proliferation of short-time interval meteringP8F

9
P for many facilities and significantly more 

energy monitoring capability within facilities, more data are available to explain the variation in 
a facility’s energy use throughout the days, weeks, and seasons of the year. With short interval 

                                                 
8  Hereinafter, Regression Reference Guide. 
9  Short-time interval data, hereafter referred to as short-interval data, refers to data collected in monitoring 

intervals much less than one month, typically an hour or less, although daily data could also be considered 
short-interval data. Short-interval does not refer to the total time period over which data are collected, but the 
interval between data records. 
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monitoring, the practitioner can more quickly obtain data representative of a broad range of 
conditions. Regression models built from the broadest range of data introduce the least bias error 
to the results, have the lowest uncertainty, and provide the best extrapolation to annual savings. 

2.2. Applicability 
This protocol is applicable to whole buildings, facilities, or their subsystems that meet the 
following criteria: 

 There is at least one year of data (in most situations)P9F

10
P available from whole 

buildings, facilities, or their subsystems for development of baseline models prior to 
ECM installation. The data includes energy use or demand, and relevant independent 
variables such as ambient temperature, operation schedule, or building occupancy. The 
data can be measured in monthly bills or in short intervals such as 15 minutes, an hour, or 
a day.  

 The selected independent variables explain most of the variation in energy use 
within the measurement boundary (whole building, relevant meter, or subsystem). 

 Expected savings are large in comparison with energy model uncertainty. 

 Program or project requirements allow verification of all ECMs within a 
measurement boundary, whether it is a whole building or building subsystem.  

For the purposes of analysis, sub-hourly data should typically be aggregated to the hourly or 
daily level. Selection of the appropriate time interval – such as whether to use hourly or daily 
aggregations (also referred to in this protocol as time granularity)P10F

11
P – depends on several factors, 

including ease of use (which typically favors daily data), need for a heightened variability in the 
independent variable (which favors hourly data), and a need to estimate peak demand impacts 
(which also favors hourly data). The calculated statistics for the hourly or daily model, such as 
the correlation coefficient and the coefficient of variation of the root-mean squared [CV(RMSE)] 
may also affect the choice of time interval, as discussed later in this document. 

The following sections discuss the advantages and disadvantages of using this protocol when 
these criteria are met. 

                                                 
10  Baseline models can be constructed with less than one year of data if the available data provides coverage 

of a full range of operating conditions 
11  Although time interval is used throughout this document, the data could be collected at non-uniform 

intervals, such as change-of-value (COV) data from an energy management system, or at different intervals 
for different variables. Time granularity refers to the general quantity of data in the monitored period. For use 
in regression, data recorded at non-uniform intervals should be converted to a common time interval, or a 
weighed regression used to compensate for the different interval lengths. 
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2.3. Advantages of this Protocol 
Use of this protocol has several advantages because it: 

 Uses measured energy and independent variable data to account for savings 

 Verifies the impact of all ECMs implemented within the selected measurement boundary 

 Leverages large volumes of research on degree-day methods, change-point models, and 
non-linear and multiple regressions 

 Is supported by public and commercially-available data preparation and analysis tools 

 Estimates savings uncertainty 

 Tracks savings over long periods 

2.4. Disadvantages of this Protocol 
This protocol is usually not appropriate when sponsoring parties require the calculation of 
savings from individual ECMs amongst multiple ECMS within a measurement boundary. It 
cannot be applied when the monitoring systems are not in place and hence there is no available 
data. Its methods require a familiarity with statistical regressions, a skill not always available 
among service providers. This protocol implicitly assumes an existing condition baseline. A 
different protocol is needed for ECMs where a current practice baseline is appropriate because of 
program guidelines or because the existing equipment had reached mechanical failure and no 
longer represents a viable baseline.  

The useful tools that are available require time to become familiar with them. Furthermore, at 
present there is no single tool that provides all the capabilities needed, as discussed in Chapter 7 
of this protocol. In most circumstances, users must leverage multiple tools to follow the guidance 
in this protocol.  

While not necessarily a disadvantage of this protocol, it should be noted that the Energy 
Modeling Protocol may need to be supplemented by a different protocol to quantify energy 
usage impacts due to identified Non-Routine Events occurring within the measurement 
boundary. This is discussed in detail in sections 3.1.7 and 3.1.8 of this protocol. 
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3. Algorithm 

3.1. Basic Procedure 
The IPMVP outlines procedures for determining two types of energy savings: avoided energy 
use and normalized savings. Avoided energy use is the reduction in energy use that occurs in the 
reporting period relative to what would have occurred if the facility had been equipped and 
operated as it was in the baseline period, but under reporting-period operating conditions. 
Normalized savings are based on the reduction in energy use that occurred in the reporting period 
relative to what would have occurred if the facility had been equipped and operated as it was in 
the baseline period, but under a predetermined and accepted, normal set of conditions.  

The typical avoided energy use approach is a subset of the normalized savings approach, as 
shown in the procedural steps below. The normalized savings approach adjusts both baseline and 
post to a fixed set of conditions. The avoided energy use approach uses the set of post conditions 
as the fixed set of conditions.   

An M&V project using the avoided energy approach includes these general steps: 

1. Collect baseline data. 

2. Develop a model for the baseline period. 

3. Use the baseline model to predict energy consumption for the post-installation period 
conditions. 

4. Calculate savings by subtracting the measured post-installation period energy use from 
the predicted baseline energy consumption for the post-installation period (as calculated 
in Step 3). 

In the normalized savings approach, both a baseline and a post-period model are developed and 
used to predict consumption for a common set of fixed conditions as follows: 

1. Collect baseline data. 

2. Develop a model for the baseline period. 

3. Use the baseline model to predict energy consumption under fixed conditions. 

4. Collect post-period data. 

5. Develop a model for the post-period energy use. 

6. Use the post-period model to predict energy consumption under fixed conditions. 

7. Calculate savings by subtracting the adjusted post-period energy use (as calculated in 
Step 6) from the adjusted baseline energy use (as calculated in Step 3). 
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Selection of an avoided energy use or normalized savings approach should be guided by utility 
program guidelines and documented in the M&V plan. For projects with a long useful life, a 
normalized savings approach may be more useful for system planners. For short-lived ECMs, 
normalization to long-run weather averages may be less useful. When the reporting period is less 
than one year, a normalized savings approach is needed to estimate annual savings. When a 
normalized savings approach is the desired approach, practitioners should estimate both avoided 
energy use and normalized savings and compare the differences to the differences in post-period 
and fixed conditions to confirm that the differences make sense directionally (e.g. a post-period 
with abnormally warm weather should generate more savings using an avoided energy use 
approach than a normalized savings approach for cooling system measures). 

The overall process for a project is shown in Figure 3-1. The adjustment of the baseline model to 
the post conditions – or the adjustment of both the baseline and the post models to the fixed 
conditions – occurs as part of the Calculate Savings step. 

Figure 3-1: Process Flowchart 
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In most cases, the baseline and post models will be of the same type, using the same independent 
variables and the same number of parameters. However, this will not always be the case, as 
discussed in Section 3.2 of this protocol. 

Also, in most cases, ambient temperature will be an independent variable. There are important 
considerations in checking site weather data and in choosing site weather data or data from the 
nearest weather station. These considerations are discussed in Chapter 4, Measurements and 
Monitoring. 

When normalized savings are used, the fixed conditions basis will commonly be annual typical 
meteorological year weather, but may be other agreed-upon fixed conditions for the independent 
variables. The most recent Version 3 (TMY3) data sets from the National Renewable Energy 
Laboratory’s (NREL) National Solar Radiation Data Base are used in this protocol.  

The general steps for choosing a model are an extension of the process for regression, since this 
is a regression-based protocol. As described in the companion document, BPA’s Regression for 
M&V: Reference Guide,P11F

12
P the following steps should be used to develop models: 

1. Identify all independent variables  

2. Collect datasets 

3. Clean the data 

4. Graph the data 

5. Select and develop a model 

6. Validate the model 

7. Perform an analysis of residuals 

Much of this Energy Modeling Protocol emphasizes development of good energy models, which 
comprises Steps 4, 5, and 6 above. The discussion here will expand upon the coverage in the 
Regression Reference Guide. 

3.1.1. Using Charts as an Aid to Choosing a Model 
Developing an energy model is an iterative process involving Steps 4, 5, and 6, above. The first 
step involves identifying the important variables by charting the data: 

 Chart the data. Use charts to confirm the relationship with the assumed independent 
variables. Scan the data for outlier points that do not conform to the expected 
relationship. Investigate suspected outliers. 

 Observe the scatter in the data, especially looking for multiple groups. Use this 
information to determine the need for categorical variables or different or additional 

                                                 
12  Hereinafter, Regression Reference Guide. 
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continuous variables. (Continuous and categorical variables are described in the 
Regression Reference Guide.) 

 If there appears to be a need for one or more categorical variables, filter the data 
used in the chart for each value of the likely categorical variable or variables to confirm 
they significantly reduce the scatter. 

The next steps involve choosing the best-fit regression model and validating the energy model by 
comparing the model uncertainty with the expected savings: 

 Observe the form of the data. Use the form to select the appropriate type of regression 
model. 

 Develop the model. This protocol assumes the use of ordinary least squares (OLS) 
regression.P12F

13
P This is the most common form of regression modeling and the default 

procedure in most software packages. 

 Validate the model. Compare model uncertainty with expected savings. Check the 
goodness of fit statistics such as CV(RMSE), Net Determination Bias Error (NDBE), and 
R-squared.  

 Analyze the residuals. Chart the model’s residuals to confirm there are no violations to 
the underlying assumptions of OLS regression.P13F

14 

 Apply judgement. Do the direction and magnitude of the regression coefficients make 
sense? Solicit feedback from relevant parties (facility energy team members and utility 
EE engineers) and apply judgement to assess model validity. 

 If the model is not satisfactory, return to Step 4 and re-chart the data changing one 
or more of the following: measurement boundary, time interval, or the independent 
variable(s).  

The first step in choosing a model is to chart the data using a scatterplot. In many cases, there 
will be a single continuous independent variable, such as ambient temperature or production. 
However, there may be multiple categorical variables, such as daytype (perhaps weekday, 
weekend, and holiday), occupancy status, and/or equipment status. After charting the data, the 
user should pick an appropriate model form, based on the shape of the data in the scatterplot. If 
there is not a clear form to the data, then data filtering and re-charting are used to determine 
relevant categorical variables. 

                                                 
13  OLS regression is a procedure that solves for the set of coefficients that minimizes the sum of the squared 

differences between the raw data and the fitted linear trend.  
14  The assumptions required for OLS regression: (1) Model residuals must follow an approximate Normal 

distribution with a mean of zero. (2) Residuals must have a constant variance (homoscedastic). (3) 
Residuals must not be correlated with any of the independent variables or the predicted values of the 
dependent variable. (4) Residuals must be independent of each other. 
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Categorical variables are discussed in the next section. Note that model selection may be an 
iterative process. However, the data should always be charted first, and then the chart is used to 
qualitatively determine the value of incorporating various categorical variables.  

For energy models, the savings must be significantly greater than the uncertainty in data and the 
resulting model. ASHRAE Guideline 14 refers to the ratio of uncertainty to savings as the 
fractional savings uncertainty (FSU), or relative precision. This is accomplished by choosing the 
appropriate granularity for the model, with regard to both the measurement boundary and the 
time interval. In general, uncertainty will be decreased as model approaches change in the 
following order: 

1. Measurement boundary around the whole building using longer-interval data  

2. Measurement boundary around the whole building with short-interval data 

3. Measurement boundary around the affected system with longer-interval data 

4. Measurement boundary around the affected system with short-interval data 

There may be multiple satisfactory solutions. For example, the two middle options above could 
provide very similar uncertainty, depending on the specific measurement boundaries and time 
intervals. Because there may be multiple satisfactory solutions, to minimize cost it is usually best 
to see what can be done with existing available data, rather than acquiring new data. This is 
reflected in Figure 3-1, above. 

3.1.2. Identifying Measurement Boundaries 
There are many choices possible for the measurement boundary. It can be drawn around a single 
piece of equipment, a complete system, the collection of equipment and systems served by a 
meter, or the whole building. In general, the whole building approach uses data from the utility 
revenue meters. A systems or equipment approach uses data from available sources, such as the 
energy management system or data loggers.  

All energy from a certain utility type (electricity, gas) crossing the measurement boundary 
should be measured. If multiple meters for the same utility provide services within the 
measurement boundary, data from each meter may be combined. The measurement boundary 
should be drawn so that measurements and modeling are as simplified as possible.  

Measurement boundaries may be drawn around the whole building, as shown in Figure 3-2 (blue 
boundary) or a complete HVAC system (green boundary), or it may be drawn to define specific 
systems, such as the chilled water plant, boiler plant, or air handlers. 
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Figure 3-2: Measurement Boundaries for Whole Building (blue) and Sub-Systems (green) 

 
 

3.1.3. Selecting Time Intervals and Assessing Coverage 
At the start of the energy efficiency project, energy use data should be collected. Monthly bills 
and short-interval data should be included as available, as should weather data from the site and 
a local weather station. An initial energy baseline model should be quickly developed and 
evaluated for its suitability. This evaluation will support a decision on whether to go forward 
with the initial model or whether another approach – using different data or a different 
measurement boundary – will be necessary. 
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Models built from short-interval data are generally more accurate than those built from monthly 
data, as there are more data covering a greater range of conditions. Whether monthly, daily, or 
hourly data are available, an assessment must be made as to whether it is adequate for verifying 
the expected amount of savings. 

In most cases, the important factors influencing commercial whole-building energy use typically 
analyzed for energy modeling are ambient temperature and building schedules. The data for 
these factors must be collected for the same time period, and processed into the same time 
intervals, as the energy data. 

Any time periods with unusual loads or operation (such as a period with major equipment 
failures or renovations) must be identified. The effects of such anomalous operations must be 
measured and accounted for, or the affected time period may be removed from the data set used 
for the model. For related details, please see sections 3.1.7 and 3.1.8. 

The collected data should cover the full range of operating conditions of the building. Good 
empirical modeling requires that models be developed from data encompassing as much of the 
range of possible dependent and independent variable values as possible. Out-of-sample 
predictions, or extrapolation, refer to cases when the model is used to estimate the dependent 
variable for levels of the independent variable outside the range used to develop the model. The 
uncertainty formulas in Chapter 5 of this protocol deal with the uncertainty within the range of 
independent variables used to develop the model. Out-of-sample predictions lead to extrapolation 
errors that cause the fractional savings uncertainty calculations to under-estimate the true 
uncertainty. 

ASHRAE Guideline 14 allows 10% extrapolation above, and 10% below, the baseline period 
ambient temperature range when estimating energy use for models that use ambient temperature 
as the independent variable. Analysts have no control over the weather so prescriptive rules are 
challenging and some professional judgement is needed. However, the intent of the guideline is 
sound. When considering use of the Energy Modeling Protocol with less than one year of 
baseline and one year of post-period data, the M&V plan should include a discussion of the 
“coverage” of independent variables in the baseline model. If the M&V plan calls for a 
normalized savings approach, the expected coverage in the post-period should be addressed 
because a separate post-period model is developed to predict energy consumption under fixed 
conditions. 

For a weather model, a simple coverage factor can be computed by comparing the range of 
temperature conditions in the baseline period to the range of the temperature conditions in TMY3 
weather for the facility location. A more robust coverage factor calculation that takes into 
account the distribution of weather conditions over the year might involve binning intervals, or 
even expected energy consumption, and looking at the proportion that is within-sample versus 
the proportion that is out-of-sample. Consider the following example where daily energy usage is 
modeled as a function of average daily weather. 

 Baseline Period:  

■ Minimum average daily temperature = 28 degrees (F) 
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■ Maximum average daily temperature = 74 degrees (F) 

 Typical Meteorological Year: 

■ Minimum average daily temperature = 29 degrees (F) 

■ Maximum average daily temperature = 83 degrees (F) 

In this example, there is no coverage issue for cold weather conditions. The baseline period 
actually has slightly colder weather than would be encountered predicting energy consumption 
for fixed condition TMY weather. The issue for this example occurs with warm weather. When 
the baseline model is used to predict energy consumption (and savings) above 74 degrees (F), the 
estimates will be subject to extrapolation error. How many days per year will the model be asked 
to predict out-of-sample? If there are 25 such days in the TMY data file, the coverage factor 
could be defined as: 

 Coverage Factor = (365 – 25)/365 = 93.2% 

Coverage concerns increase as the expected volume (number of days) and distance (temperature 
differential) of out-of-sample predictions grow. There are also ECM-specific considerations to 
weigh. For a gas heating project, the lack of warm weather coverage may be of little concern. For 
a chilled water system ECM, the lack of warm weather coverage should be clearly identified in 
the M&V plan as a threat to validity. Every effort should be made to gather additional summer 
operating data if possible.  

Coverage considerations apply equally to the baseline and reporting period when a normalized 
savings approach is used. If the coverage factor in the reporting period is poor, estimates of 
adjusted post-period energy use will be subject to extrapolation errors.  

One year of pre and post data is not a coverage panacea, but does ensure a full range of seasons 
are observed. When the independent variable in the model is an operational parameter (widgets 
produced, tons of raw material processed, gallons pumped, etc.), often a shorter period can 
provide the needed range, if it covers times of both heating and cooling. Chapter 5, Uncertainty, 
of this protocol provides more insight on the issues associated with not covering the full range of 
data. 

The data quality must also be evaluated. The data should not have lengthy periods of missing 
values and should not have any clearly erroneous values. The energy and independent variable 
data need to be normalized to a common time interval. An analysis time interval of one day or 
one hour is recommended for energy models. In most cases, shorter time intervals are not 
appropriate. Time intervals shorter than one hour are seldom appropriate because they capture 
shorter-term equipment behavior, which increases the scatter in the data, but does not increase 
the information content in the model, since the shorter-term behavior is not related to the 
independent variables. For example, hourly intervals may capture behavior due to scheduling or 
occupancy, but shorter intervals capture behavior due to equipment controls. Therefore, time 
intervals shorter than one hour are only appropriate for system-level or equipment-level models 
where the control or status is one of the independent variables. 
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3.1.4. Adjusting Baseline to Post Conditions 
When calculating the avoided-energy-use type of savings, the model’s equation is used to predict 
what the baseline energy use would have been under the post conditions. For each post point, the 
post energy use and the associated value(s) of the independent variable(s) needed for use in the 
baseline model should be available. The value(s) of the independent variable(s) are plugged into 
the baseline model’s equation and the resulting estimated energy use represents the baseline 
projected to the post conditions.  

3.1.5. Calculating Savings 
For avoided energy-use, the actual post-period energy use, totaled for all the post points in the 
reporting period, is subtracted from the projected baseline energy use to get the estimated 
savings for the reporting period. 

In some cases (such as for very long reporting periods), only the actual accrued savings in the 
period must be determined. In these cases, the measured post-installation energy use may be 
subtracted from the adjusted baseline energy use as determined by the baseline model. This 
approach is illustrated in Figure 3-3. 

Figure 3-3: Baseline Projection and Savings 

 

If savings are to be stated for conditions other than the post-installation period – a fixed 
conditions basis type of savings – a post-installation energy model that relates the energy use 
with variables describing those fixed conditions must be developed. Usually the conditions are 
TMY weather. Both baseline and post-installation energy use must then be estimated using TMY 
data, providing normalized energy use. Savings are estimated by subtracting the normalized post-
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energy from the normalized baseline energy. The estimated savings are termed normalized 
savings. 

3.1.6. Extrapolating Annual Models Based on Less Than a Year of Data 
Unless the reporting period is a full year or more, the collected datasets will be for a shorter time 
period. In these cases, the energy use from the measured reporting period must be extrapolated to 
an entire year. This is done by:  

 Creating a post-installation model from the collected data in the same way the baseline 
model was created  

 Developing annual fixed-conditions using the ambient temperature data from a TMY 
weather file or normalized values of the independent variable if weather is not the 
independent variable 

 Assessing the coverage factor. If the coverage of the range of the independent variable(s) 
in the fixed conditions is poor, extend the reporting period. 

 Developing the baseline and post-installation models based on partial-year data, to 
estimate baseline and post-installation annual energy use  

 Subtracting the estimated annual post-installation energy from the baseline energy to 
estimate the annualized savings  

Figure 3-4 illustrates the process. Regression models are created by plotting energy use per hour 
versus temperature before and after changes are made to the building (that is, creating baseline 
and post-installation models). The baseline model is green; the post model is red. The two 
models are used to get the savings at each temperature bin. The savings at each temperature bin 
are multiplied times the number of hours in each temperature bin, which are shown by the bars. 
Then, the savings for each bin are added together to get the total annual savings. Note, this is not 
an IPMVP-adherent procedure, since the savings in this case will not be based on actual 
measurements in the post-installation period for the entire year. 
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Figure 3-4: Annual Extrapolation and Normalized Savings 

 

3.1.7. Non-Routine Events 
An underlying assumption of the Energy Modeling Protocol is that the only change in facility 
operation during the baseline and reporting periods is the ECM being analyzed. Sometimes this 
assumption is violated and a significant one-time change unrelated to the ECM occurs within the 
measurement boundary. A change to static factors that affects energy use is a “non-routine 
event,” or NRE. When a non-routine event occurs, the savings must be adjusted to isolate 
savings due to installed measures, and not due to measures plus changes caused by non-routine 
events. Non-routine events can include adjustments in facility equipment or operations, including 
(but not limited to) renovations, facility expansion, equipment addition or removal, and changes 
to occupancy type or schedule. 

Non-routine events can: 

 Add or remove load; 

 Be permanent or temporary; 

 Be another ECM incented under other programs, or non-incented; 

 Occur in the baseline period, the reporting period, or during the ECM installation period. 

■ Understanding the timing is important to developing an appropriate adjustment 

■ When NREs occur in the baseline period, the NRE and proposed adjustment should 
be documented in the M&V Plan. The M&V plan should also describe in general 
terms how NREs in the reporting period will be flagged for consideration and treated.  
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■ When NREs occur in the installation or reporting periods, the Savings Report should 
document how they were identified and the approach used to account for the effects 
in the savings estimate. 

 Be independent of the ECM or have interactions with the ECM.  

■ An example of an ECM that is independent of an NRE is a process motor upgrade in 
a manufacturing facility that also installs LED lighting throughout the plant. If a 
whole-building energy model is being used, the reduction in lighting load will 
influence the model, but it is unrelated to the improved efficiency of the process 
motors. Even though the ECM and NRE are independent of one another, because the 
NRE lies within the measurement boundary, an adjustment is needed. 

■ An example of an interaction between an ECM and NRE is an HVAC upgrade in a 
facility that undergoes an expansion. If the expanded footprint would have been 
served by the existing system absent the ECM, the expansion can be expected to 
increase the savings attributable to the ECM. Whether or not the ECM is credited 
with this increase (or decrease) in savings is governed by program policy and 
procedures.  

The distinction between an NRE and an outlier is not always clear and requires professional 
judgment based on an understanding of facility operation. A temporary NRE – such as a labor 
strike or equipment failure – can be handled similarly to an outlier. With justification, data from 
the affected period can be removed from the model provided it does not lead to excessive data 
gaps or poor coverage of operating conditions. A permanent NRE can be thought of as “the new 
normal.” In the case of a permanent NRE, data from the affected period should not be removed. 
Instead, the effect of the NRE should be removed from the model-based savings estimate. 

In addition to re-baselining (next section), there are two categories of methods that may be used 
to adjust for the impacts of NREs. 

1. Net Out the NRE Using Engineering Calculations 

This approach involves estimating the effects of the NRE independently and using the estimates 
to adjust either the input data or results of regression-based model. Consider the following 
example: 

NRE Scenario A 

A large office building implements an upgrade to its chilled water system in October 2017 and 
applies for program support. The chiller upgrade is the ECM being analyzed using a whole-
building energy model with daily kWh consumption data. In March 2018 the facility migrates its 
on-site data center servers to a cloud solution. The server migration may be considered an NRE. 
Engineering calculations for the server migration include interactive effects on the new cooling 
system and estimate savings of 250 MWh/year. 

 Baseline period = October 2016 to September 2017 
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 Reporting period = November 2017 to October 2018 

The server migration is within the whole-facility measurement boundary and confounds 
measurement of savings from the ECM of interest. A savings estimate using the whole-building 
model will include the reduced consumption from the server migration from March 2018 to 
October 2018. Two potential approaches to adjust for this NRE are to: 

1. For each day in the reporting period after the server migration is complete, add back the 
assumed server loads to the metered consumption. This could be the same value for each 
day (250,000/365.25 = 684.5 kWh) or differentiated by weekday/weekend if appropriate. 
Use the baseline model to predict an adjusted baseline and calculate avoided energy use 
as the difference between the adjusted baseline and the reconstituted reporting period 
consumption values.  

2. Calculate the total savings in the reporting reported using the actual metered data for the 
reporting period. This savings estimate will be inclusive of the reduced server load from 
March 2017 to October 2018. For the portion of the reporting period following the server 
migration, subtract the estimated daily server load from the aggregate savings at the 
meter to isolate the effect of the chiller ECM. 

2. Explicitly Controlling for the NRE in the Regression Model 

This approach involves including the presence of the NRE as an independent variable in the 
model. Consider the following example: 

NRE Scenario B 

A large office building implements an upgrade to its chilled water system in October 2017 and 
applies for program support. The chiller upgrade is the ECM being analyzed using a whole-
building energy model with daily kWh consumption data. In March 2017 the facility migrates its 
on-site data center servers to a cloud solution. The server migration is an NRE. Engineering 
calculations for the server migration include interactive effects on the new cooling system and 
estimate savings of 250 MWh/year. 

 Baseline period = October 2016 to September 2017 

 Reporting period = November 2017 to October 2018 

In this example, the NRE occurs in the baseline period. An alternative to netting out the effect of 
the server migration is to directly control for it in the baseline model. To implement this 
approach, an indicator variable named “Server” is included in the model. It is equal to 1 on days 
following the server migration and zero otherwise. The coefficient of the “Server” term in the 
model represents the change in daily energy consumption when Server = 1. It should have a 
negative coefficient approximately equal to the engineering savings of 684.5 kWh per day.P14F

15
P 

                                                 
15  The NRE indicator variable could also be interacted with the independent variable if the magnitude of the 

NRE is expected to be a function of the independent variable(s). An interaction is created by multiplying two 
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Because the server migration is in place during the reporting period, the “Server” variable is set 
to 1 for each day in the reporting period and the adjusted baseline is predicted using the value of 
this model coefficient. 

An explicit approach is useful when no engineering estimate of the NRE is available or 
developing one would be challenging or cost-prohibitive. This approach is also useful for 
temporary NREs that span a long period of time that would be problematic to drop from the 
analysis. Savings can be calculated with the NRE indicator variable set to “On” or “Off” (1 or 
zero) as appropriate based on an understanding of the ECM, facility operation, and program 
guidelines.  

Figure 3-5 provides a general framework for addressing NREs within the Energy Modeling 
Protocol. 

Figure 3-5: Framework for Addressing NREs 

 

3.1.8. Re-Baselining 
The discussion of NREs in Section 3.1.7 focuses on making adjustments to an existing energy 
model to reflect changes in the equipment or operating characteristics that affect energy 
consumption within the measurement boundary. In some cases, the changes within a facility are 
so fundamental that a new energy model is needed. The development of a new energy model is 

                                                 
independent variables to create a new variable. An interaction between an NRE indicator variable and a 
temperature variable would capture the change in the NRE effect on load per 1-degree change in 
temperature – or the slope of the NRE effect. 

• Determine whether an NRE occurred 1 
• Determine whether the NRE’s impact is material and merits 

quantification and adjustment 2 

• Determine whether the NRE is temporary or permanent 3 

• Determine whether the NRE represents a constant or variable load 4 

• Determine whether the NRE represents added or removed load 5 

• Based on the assessment of Items 3 – 5 above, develop and 
implement an approach to quantifying the NRE  6 
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referred to as “re-baselining.” The clearest example of this would be a significant new ECM. 
Generally, it is advisable to develop a new energy model to estimate savings from a new ECM if 
adequate time has passed since the installation of a previous ECM. Typically, adequate time 
would be one year so that the baseline model for the new ECM is constructed with exclusively 
post-period data from the prior ECM. When the implementation dates of ECMs are close 
together, additional care is needed to isolate the effect of the ECM of interest. 

For initiatives like Strategic Energy Management (SEM) where ECMs tend to be a series of 
smaller adjustments rather than large capital upgrades, reporting periods can occur year after 
year for several years. The BPA ESI MT&R Reference Guide provides a useful taxonomy of 
non-programmatic effects and recommendations for adjustments, which is adapted below: 

 Static Change – a static change in energy use within a well-defined boundary and with 
minimal interactive effects. 

■ Net out the NRE approach using sub-metering or engineering calculations – unless 
the NRE is a new ECM whose savings should be captured by the model 

 Minor Process Change – a distinct change in operations without fundamentally 
changing the process itself. 

■ Control for the NRE via regression approach, and when a regression approach is not 
suitable, then apply engineering calculations. 

 Major Process Change – affects the fundamental energy consumption characteristics of 
the facility rending the original model specification invalid. 

■ Re-baseline and create a new regression model of the facility or process 

This guidance is intended to help staff decide if and how to adjust an existing energy model to 
account for an NRE, or whether the NRE is significant enough to trigger re-baselining. Like 
many aspects of the Energy Modeling Protocol, professional judgement based on understanding 
of the utility program, facility operation, and the ECM(s) of interest is critical when determining 
how to handle non-programmatic changes. 

3.2. Equations and Model Applications 
This protocol recommends that linear and simple polynomial model types be used to develop the 
baseline and post-installation period models for use in M&V analysis. The linear models, which 
include simple linear regressions, change-point models, and multiple regression models are 
discussed at depth in the BPA Regression Reference Guide. The model equations and physical 
significance are briefly described again here for convenience, but equation coefficients are not. 
This protocol describes additional model types not included in the Regression Reference Guide 
that may be useful for certain types of buildings or systems. Examples of actual applications are 
also provided to illustrate concepts. 



 

Verification by Energy Modeling Protocol 
22 

3.2.1. Model Types 
The model types described in this protocol include the following: linear, change-point linear, 
and polynomial. Change-point models often have a better fit than a simple regression when 
modeling energy usage for a facility.P15F

16
P Because of the physical characteristics of buildings, the 

data points have a natural two-line angled pattern to them. Sometimes it is even appropriate to 
use multiple change points. Multi-variable change-point linear models derived from multiple 
regression requires the use of interaction terms that can be tedious to create and manage 
depending on the software package utilized for modeling.  

As discussed in the following sections, there are a variety of considerations in developing an 
appropriate energy model. For example, some energy analysts and M&V practitioners believe 
that models based on weather conditions should include a measure of ambient humidity, as well 
as ambient temperature. While this can be true in certain circumstances, it is usually not 
necessary. Commonly used measures of humidity are collinear with temperature and hence add 
little to a model and can lead to incorrect inferences and uncertainty. 

When using empirical models, care should be taken to gather as much data over the entire range 
of conditions as possible and to avoid extrapolating energy use to conditions outside the data 
range. While some higher parameter models have bounds at least at the lower end, many models 
are unbounded and can easily yield erroneous results not far outside their data limits. 

In most cases, the analyst will know the appropriate independent variable. For multivariate 
models, use as few independent variables as possible to obtain a reasonable model and have a 
good understanding of the variables you are using. Creating a good multivariate model needs to 
begin with a strong understanding of what drives energy use. You can avoid multicollinearity –
where two independent variables are highly correlated – by creating a model that you think best 
describes your dependent variable and then check via scatter plots to see that the relationships 
between each independent variable and the dependent variable are viable. This will give you a 
sense of the impact that each independent variable has on the dependent variable. Additional 
scatter plots of the independent variables together can assist in visually assessing whether one 
independent variable is correlated with another.  

An alternative approach to detecting multicollinearity is to calculate the variance inflation factor 
(VIF) statistic for each variable in the multiple regression model. Section 5.1.8 of the Regression 
Guide discusses VIF statistics in detail and suggests that if any independent variable in the model 
has a VIF statistic greater than 10, multicollinearity is a problem and a term should be removed 
from the model specification (consider removing high VIF variables first).  

Understanding the theoretical impact that an independent variable has on the dependent variable 
can help you to avoid using two independent variables that are correlated. Finally, after running 
the whole multivariate model, if you are still concerned about multicollinearity, you can add 
independent variables one at a time. This is commonly known as step-wise regression. Then 

                                                 
16  See the BPA Regression Reference Guide for a detailed description of change-point linear regression. 



 

Verification by Energy Modeling Protocol 
23 

evaluate the t-statistic or p-value for each variable as it is added, to make sure it is significant. 
(See the section on Multicollinearity in the BPA Regression Reference Guide.) 

One-Parameter Model (Mean Model) 

The simplest model is the one-parameter (1P) model, in which the energy use does not vary with 
any independent variable. The energy use is a constant when the equipment or system is in use, 
or it has less than a 5% variation,P16F

17
P in which case, an average is used. This can apply to constant 

speed pumps and fans, and lighting circuits and similar equipment. One-parameter models have a 
simple equation: 

 One Parameter Equation:  E = β R1R  

Two-Parameter Model (Ordinary Linear Regression) 

Two-parameter (2P) models are equivalent to simple linear regressions with one independent 
variable. These model types are appropriate for buildings that require cooling or heating for the 
entire year, such as in extremely cold or warm climates. Selected building systems can be 
modeled with 2P models: Haberl and CulpP17F

18
P cite dual-duct, single-fan, constant volume systems 

without economizers. Two-parameter models have equations in the form: 

 Two Parameter Equation:  E = β R1R + β R2RT 

Figure 3-6 provides an example of a 2P cooling model. It is based on 2½ months of daily 
(analysis time interval) data of the electricity use at a university laboratory building. This data is 
for weekdays only; the weekend days had lower energy use and had a separate model. 

                                                 
17  This variance is defined as the coefficient of variation of the standard deviation: CV(STD). It is calculated by 

CV(STD) = σ /ẋ, where σ = standard deviation about the mean value of all measurements, and ẋ = mean of 
the measured values. 

18  Review of Methods for Measuring and Verifying Savings from Energy Conservation Retrofits to Existing Buildings. 
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Figure 3-6: A 2P Energy Model of Electricity Use (kWh) in a 
University Laboratory Building, Using Daily Data 

 

Three-Parameter Change-Point Models 

Three-parameter (3P) linear change-point heating and cooling models are applicable to many 
types of buildings and systems. The change point indicates a change in the dependence of energy 
use on the independent variable.  

Three-Parameter Heating Model 

In the heating mode, the energy use (such as natural gas) has a decreasing dependence on 
ambient temperature as it increases until the change point is reached. As the ambient temperature 
increases beyond the change point, the heating energy use remains constant. This is typical of 
most buildings. Three-parameter change-point heating models have equations in the form: 

 Three-Parameter Change-Point Heating Model: E = β R1R + β R2 R(Τ−β R3R)P

+ 

The superscript + after the parenthetical term means that only positive values of the term will be 
used, otherwise it should be evaluated as zero. In pseudo-code, it is equivalent to: 

 IF (β R3R – T) > 0, (β R3R – T), else 0 

3,500

3,600

3,700

3,800

3,900

4,000

4,100

4,200

4,300

4,400

40 45 50 55 60 65 70 75 80 85 90

kW
h 

AmbientTemperature 

kWh
Linear Model



 

Verification by Energy Modeling Protocol 
25 

Three-Parameter Cooling Model 

For the three-parameter cooling model, the cooling energy use is constant below the change-
point temperature and increases linearly as temperature rises above it. Three-parameter change-
point cooling models have equations in the form: 

 Three-Parameter Change-Point Cooling Model: E = β R1R+ β R2R (T – β R3R)P

+ 

Figure 3-7 provides an example of a 3P cooling model. It is based on a month of hourly data for 
chilled water energy use in a university building. 

Figure 3-7: A 3P Energy Model of Chilled Water Use (tons) in a  
University Laboratory Building, Using Hourly Data 

 

Four-Parameter Change-Point Models 

Four-parameter (4P) linear change-point heating and cooling models are applicable to buildings 
and systems that display different linear dependence of energy use with the independent variable 
in different ranges. For example, a building with a chilled water plant and variable volume air 
distribution systems equipped with economizers will display different electric energy 
dependence on ambient temperature when the air handling unit is economizing at mild 
temperatures than displayed in warmer temperatures, when the building will rely exclusively on 
mechanical cooling.  
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Four-Parameter Heating Model 

Four-parameter change-point heating models have equations in the form: 

 Four-Parameter Change-Point Heating Model: E = β R1R + β R2R(β R4R – T)P

+
P - βR3R(T – β R4R)P

+ 

Figure 3-8 provides an example of a 4P heating model. It is based on a month of hourly data for 
heating hot water energy use in a university building. 

Figure 3-8: A 4P Energy Model of Hot Water Use in a  
University Laboratory Building, Using Hourly Data 

 

Four-Parameter Cooling Model 

Four-parameter change-point cooling models have equations in the form below: 

 Four-Parameter Change-Point Cooling Model: E = β R1R - β R2R(β R4R – T)P

+
P + β R3R(T – β R4R)P
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Five-Parameter Change-Point Model 

Five-parameter (5P) linear change-point models are useful for modeling building energy use 
when the same energy source provides both heating and cooling, such as a building with air 
conditioning and electric heating. Five-parameter models can also be useful for modeling the 
weather dependence of energy use in variable volume air distribution systems. Five-parameter 
models display a linear dependence of energy use on ambient temperature below the heating 
change point and above the cooling change point, and constant energy use between the heating 
and cooling change-points. Five-parameter change-point heating models have equations in the 
form: 

 Five-Parameter Change-Point Heating Model: E = β R1R + β R2R(β R4R – T)P

+
P + βR3R(T – β R5R)P

+ 

Future Model Types 

One weakness of the change-point models developed by ASHRAE RP-1050 is that they typically 
assume that the slope is constant above the cooling change point. An exception could be the use 
of a 4P model covering only the range of temperatures associated with cooling. Additional 
change-point model types that are extensions of the ASHRAE RP-1050 models have been 
presented by the author of the 2012 Energy Modeling Protocol at ASHRAE conferences and 
were enthusiastically received by some of the authors of RP-1050. There are two or more 
building behaviors that warrant considering that the cooling slope may not be constant. First, 
normal air-side economizer operation will result in a steeper slope at the lower temperatures of 
the cooling range. Second, if the cooling equipment is too small for the peak load, the slope may 
flatten near the high temperatures. Another consideration is variable-speed auxiliaries – pumps 
and fans – which may result in a curve to the cooling slope. 

Whether any of these are an important consideration depends upon the types of measures in the 
project, the measurement boundary, and the time interval. A change in slope due to the 
economizer can often be seen with hourly data, even at the whole-building level; it is rarely seen 
with daily data. Since equipment under-sizing is rare, the flattening of slope at the upper end is 
not seen often, but it does occur on occasion. In whole-building data, a notable curve to the 
cooling slope associated with variable speed auxiliaries is rarely evident, but it can occur with 
system-level data. When it occurs, a polynomial model may be appropriate as described below. 

Models with Improved Economizer Characterization 

To better account for economizer operation, two additional types of change-point models may be 
considered. Accounting for the economizer operation may be particularly valuable in Northwest 
climates. These additional model types are shown in Figure 3-9, below. 
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Figure 3-9: Additional 5P and 6P Model Shapes 

 

 
 

Polynomial Models 

Polynomial models will most often be 2P

nd
P-order, and they should almost always be limited to 2P

nd-

P and 3P

rd
P-order. Even 3P

rd
P-order polynomial models must be used with extreme caution, as they 

can significantly misestimate energy use when extrapolating beyond the data range upon which 
the model was developed. Figure 3-10 shows 2P

nd
P and 3P

rd
P order polynomial model shapes. 

Figure 3-10: Polynomial Model Shapes 

 

Polynomial models can be useful for system-level models (that is, for estimating energy use as a 
function of flow and, in some cases, as a function of ambient or other temperatures). Flow is 
often a function of temperature, and energy use is a function of flow. For a fixed system, the 
affinity laws state that the power is proportional to the cube of the flow. Thus, some practitioners 
believe that 3P

rd
P-order polynomials are the best for modeling variable-flow systems. However, 

this is seldom the case in practice, at least in commercial buildings.  
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First, most variable flow systems are not fixed systems. Part of the system often has a controlled 
pressure and there are valves or dampers that modulate the flow and maintain the pressure. 
Second, the efficiencies are not constant if the flow is changed significantly. Third, a significant 
portion of these systems do not have pressure drops that are proportional to the square of the 
flow – filters and coil pressure-drop exponents are something less than two. Therefore, most 
variable-flow systems can be well modeled with a 1P

st
P- or 2P

nd
P-order equation.  

Simulation of variable flow systems also confirms that variable flow systems can be modeled 
with a 2P

nd
P-order equation with the same accuracy as a 3P

rd
P-order equation, even without taking 

into account the superior extrapolation capability of the 2P

nd
P-order model. Variable-speed cooling 

tower fans may be the exceptional case that is better modeled with a 3P

rd
P-order polynomial, since 

those fans are truly operating against a fixed system. 

Polynomial models have equations of the following form: 

 2P

nd
P-Order Polynomial Model: E = β R1R + β R2RX+ βR3RXP

2 

 3P

rd
P-Order Polynomial Model: E = β R1R + β R2RX+ βR3RXP

2
P+ β R4RXP

3 

3.2.2. Multiple Regression vs. Multiple Models 

Multiple Regression Models 

This section and the next include information from the BPA Regression Reference Guide section 
on Categorical Variables. In this document, the information is expanded with examples. For an 
explanation of the statistics included in the examples, refer to the Regression Reference Guide, 
except for fractional savings uncertainty, which is discussed in Chapter 5 of this document. 

Variables can be divided into two general types: continuous and categorical. Continuous 
variables are numeric and can have any value within the range encountered in the data. 
Continuous variables are measured things, such as energy use or ambient temperature. 
Categorical variables include things like daytype (weekday or weekend, or day of week), 
occupancy (occupied or unoccupied), and equipment status (on or off). (Though occupancy 
might be stated as a categorical variable, number of occupants would be a continuous variable.) 
Most energy models for M&V will have only one continuous variable, but may also incorporate 
categorical variables. Because of this, few M&V projects will require the use of multiple 
regression with change points, as described in the prior section. 

Categorical variables are commonly used in multiple regression models for M&V. Applying a 
constant term to a categorical variable in the model will result in a model with the same slope for 
all categories, unless the categorical variable is interacted with the continuous variable. An 
interaction term is when two independent variables are multiplied together to create a new 
independent variable. A binary indicator variable will create a change the model intercept 
according to the level of indicator variable. If the indicator variable is interacted with a 
continuous the model will also a different slope for the levels of the indicator variable. For 
example, a category of occupancy status will usually have a different slope for the model of the 
occupied period than for the unoccupied period. A daytype category also will often have 
different slopes for weekday and weekend models. 
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To determine which categorical variables are important, the analyst should use a procedure such 
as the following to explore the data: 

 Create a scatter plot using all the data, without any category filters. 

 If there is a very good fit, as observed in the chart and quantified by the R-squared and 
CV(RMSE) statistics, then categories are unimportant. 

 If the scatter shows a bi-modal or multi-modal distribution (that is, there are distinct 
groupings of the scatter), then there is at least one important categorical variable. 

If the scatter is wide, then one of the following is true: 

 One or more categorical variables are important. 

 The relationship is simply weak. 

 There may be a better independent (continuous) variable or a second important 
independent variable. 

For most models, the appropriate conclusion may be found in the first bullet above. To evaluate 
which categorical variables are important, the analyst should explore the data, filtering the chart 
data for different categories. The most common category will be daytype, and for sub-daily data, 
occupancy or time-of-day. 

A weakness of the multiple regression models in ASHRAE RP-1050 is that they can create a 
model with the same slope for all categories, even when the slopes should be different. This 
weakness can be overcome, though, via creating an interaction term that is the product of a 
categorical indicator variable (0, 1) and a continuous variable. When differing slopes are needed 
by category, interaction terms (discussed below) or multiple models (discussed in the following 
section) are needed. 

Figure 3-11 is a scatter plot of daily gas consumption (therms) against heating degree days base 
55 degrees (F) for a hypothetical facility over the course of a heating season. Charting of the data 
and an understanding of facility operations have revealed that gas usage on the weekends is 
much lower than on weekdays. It is clear from Figure 3-11 that two different slopes are needed 
to capture the relationship between weather and gas consumption. 
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Figure 3-11: Daily Gas Consumption (Therms) vs. HDD, by Day Type 

 

To estimate separate slopes in one regression model, an interaction term is needed between the 
categorical variable for day type and the continuous weather variable (HDD55). For this 
example, we create a Boolean indicator variable named “Weekend” that is equal to 1 on Saturday 
and Sunday and equal to 0 Monday through Friday. An interaction term is also created by 
multiplying the continuous HDD55 variable by the “Weekend” indicator variable. On weekends, 
the ‘HDD55*Weekend’ variable is equal to the HDD55 variable. On weekdays it is equal to 
zero. Figure 3-12 shows the regression output as analyzed by the Microsoft Excel Regression 
functionP18F

19
P.  

                                                 
19  The regression function in Excel is one of the tools in the Data Analysis Add-In 
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Figure 3-12: Regression Output with Day Type Indicator Variable 

 

The coefficients of this model are interpreted as follows: 

 Intercept (275.41): is the model intercept when ‘Weekend’ = 0 (that is, on weekdays) 

 HDD55 (13.03): the model slope when ‘Weekend’ = 0. The change in expected daily 
therms for a one-unit change in HDD. 

 Weekend (-147.88): the difference in the intercept when ‘Weekend’ = 1. By calculating 
(275.41 – 147.88), we determine that the model intercept on weekends is 127.53 therms. 

 Weekend*Therms (-9.17): the difference in the slope between weekdays and weekdays. 
By calculating (13.03 – 9.17), we determine that the model slope on weekends is 3.86 
therms/HDD55. 

This approach is mathematically identical to estimating two separate regression models and 
using them to predict the consumption for the post-period. It does become more complex to 
execute in Microsoft Excel as the number of categories increases because the number of 
indicator variables is a function of the number of categories. If the number of categories is equal 
to c, the number of indicator variables required is equal to c-1. 

Multiple Models 

As an alternative to using a multiple regression model, the analyst can create separate models for 
each category or combination of categories and then combine these individual models into a 
complete model. The basic process is similar to using IF statements to determine, for each data 
point, the category of the categorical independent variable, and then using the intercept and slope 
that are appropriate for that category. 
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Daytyping 

The following charts show how daily data may be disaggregated by daytype. 

First, all the data is plotted. Figure 3-13 shows a year of meter data with demand averaged for 
each day. The individual data points could be totaled to give kWh as well; if the math is done 
properly, the approaches are equivalent. 

Figure 3-13: Sample Electricity Meter Data (kW), Using Daily Data 

 

Note the two distinct data clusters. This is an indication of two modes of operation. In this case, 
the two modes represent two daytypes, as shown in Figure 3-14. 

0

100

200

300

400

500

600

700

800

900

1,000

40 45 50 55 60 65 70 75 80 85 90

Av
g 

El
ec

M
tr1

_k
W

 

Bldg1_TempOa 

All Data



 

Verification by Energy Modeling Protocol 
34 

Figure 3-14: Sample Electricity Meter Data (kW) Showing Daytypes, Using Daily Data 

 

In this situation, separate regression models should be created for weekdays and weekends. After 
the models have been created and validated, they can be combined into a single model to 
simplify the calculations. Figure 3-15 is an example model for weekdays. From the form of the 
scatter chart, it appears that a 3P model might be appropriate. 

Figure 3-15: Sample 3P Model of Electricity Meter Data (kW) for Weekdays, Using Daily Data 
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The equation for this model in spreadsheet function form is: 

 = IF (T<56.09, 538.2, 133.5 + 11.983*T)) 

The statistics for the regression are: 
R-squared: 0.86 

CV-RMSE: 4.8% 

Fractional Savings Uncertainty: 20.2% 

Savings Range: 5.0% ±0.5% 

Net Determination Bias: 0.000% 

A 4P model could also be appropriate, as shown in Figure 3-16. 

Figure 3-16: Sample 4P Model of Electricity Meter Data (kW) for Weekdays, Using Daily Data 

 

The equation for this model is: 

 = IF (T<53.47, 645.99 +-2.416*T, -84.44+11.260*T)) 

Note that the change point for best fit changed slightly from the 3P model, from 56.09 to 53.47. 
The following statistics for the regression indicate a slight improvement relative to the 3P model: 

R-squared: 0.876 

CV-RMSE: 4.6% 

Fractional Savings Uncertainty: 18.2% 

Savings Range: 5.0% ±0.5% 

Net Determination Bias: 0.000% 
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Combining Multiple Time Categories into a Single Category 

The benefit of using daily averages is that information regarding facility occupancy and 
equipment schedules may not be required to build the model. However, when interval data is 
available, more accurate and robust models may be possible using schedule and occupancy 
information. This is more evident when less than a year of data is available to build the model 
and is dependent on the time of year the data is collected. 

When using daily models, similar days are typically combined into a single model by daytype. 
With hourly models, it can be informative to create separate models for each hour in the day. 
However, when creating the best model for M&V, similar hours should be grouped, just as 
similar days are grouped when using daily models. The individual hourly models can be one of 
the best ways to determine which hours are similar. The goal is to create as few models as 
possible, with the greatest number of data points in each model. This approach has the potential 
to reduce uncertainty, especially when developing models using less than a year’s worth of data. 

By clustering hours into groups of similar data, robust models can be created more quickly for 
two reasons: 

1. The models can be populated with data over a wide range of temperatures more quickly 
(see Figure 3-17).  

2. More data will be included within each model or bin (see Figure 3-18). 

By appropriately using the data, it is possible to shorten the time period needed to cover a wide 
range of operating conditions. 

One caution when using occupancy as a category: occupancy is generally somewhat collinear 
with ambient temperature. Therefore, analysts need to be careful as to whether the relationship 
seen is due to temperature or occupancy. 

Figure 3-17 shows the temperature range, by month and by year, for the following types of 
temperature aggregations. Data shown is for Portland, Oregon. Here are the definitions of the 
temperature ranges: 

 Daily Average Temperature: The range is the maximum daily average minus the 
minimum daily average for the month. 

 Actual Hourly Temperatures: The range is the maximum average temperature in a 
particular hour of the month minus the minimum average temperature in the same hour of 
the month.  

 Occupied/Unoccupied Temperatures: The range is the maximum temperature when the 
building is occupied minus the minimum temperature when the building is occupied, for 
the same month. 

 Maximum Temperature Range: The maximum temperature in the month minus the 
minimum temperature in the same month. 
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Figure 3-17: Typical Monthly and Annual Range in Outdoor Temperatures  
by Aggregation Method 

 

From Figure 3-17, we can deduce the following: 

 The daily average temperature typically varies by about 22º F over a month and 56º F 
over a year. 

 The temperature at a given hour typically varies by about 25º F over a month and 61º F 
over a year. 

 The range of temperatures during the typically occupied hours varies by 39º F over the 
month and by 78ºF over a year. 

 The maximum temperature minus the minimum temperature is typically 41º F over a 
month and 81º F over a year. 

So, by using hourly rather than daily average temperatures and combining time periods with 
similar operating conditions (such as grouping all occupied hours), we can increase the range of 
operating temperatures in the model.  

Note that using average daily temperatures provides only about 58% (22÷41) of the full monthly 
temperature range using a month of data, and only about 69% (56÷81) of the full annual 
temperature range using a year of data. Grouping hourly data for similar conditions raises these 
values to 95% for both monthly and annual comparisons. Of course, the monthly data varies 
slightly month-to-month, but these are typical values.  

Grouping data at similar operating conditions has an additional benefit: it increases the number 
of data points in the model. Since uncertainty is a function of the number of data points, 
uncertainty will be further reduced by this grouping. 
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Figure 3-18 illustrates that clustering all occupied hours together into a single model and all 
unoccupied hours together in another model will permit the use of fewer models or bins. It will 
also result in many more data points per model than either the daily average model 
(approximately 30 data points per month) or the hourly model (a model for every hour in the 
week).  

Figure 3-18: Number of Data Points per Month by Model Type 

 

Figure 3-18 shows that a model using daily average temperatures will have approximately 30 
data points per month, since there are typically about 30 days in a month. A bin-based model 
using a separate bin for every hour in the week will have only about four data points per bin per 
month, since there are about 4 weeks per month. Grouping data for times with similar operating 
conditions into a single model, such as a model for occupied hours, will have upwards of 220 
points in the model per month, depending upon the operating schedule. 

Therefore, using short-time-interval data, and grouping it appropriately, can reduce the metering 
time period necessary for sufficient data, improving the ability to separate the impact of an 
energy project from other building changes. 

Hour-typing and Occupancy 

There are several approaches to determining which hours are similar and could be combined. It 
usually is not sufficient to accept the occupancy or HVAC plant operating hours provided by the 
site. One of the best approaches is to create models for each hour of the day, as mentioned in the 
prior section, as shown in Figure 3-19. 
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Figure 3-19: Electricity Models Showing Demand (kWh) for Each Hour of the Day,  
Using Hourly Data 

Weekdays and Saturdays 
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From these models, it can be concluded that hours 0 through 7 and hours 22 and 23 are similar 
hours, representing unoccupied operation. Hour 8 can be considered startup. Hours 9 through 20 
are similar, representing occupancy. Hour 21 represents shutdown. So, there are four groups of 
hours, with all hours in a group showing pretty similar operation. 

Creating models for each hour of the day may be more complex than needed to determine similar 
hours. Another approach is to plot the average load profiles, filtered by daytype, to confirm the 
times when the load changes as shown in Figure 3-20. 

Figure 3-20: Average Electricity Load Profiles (kW) by Daytype,  
Using 15-Minute Data 

 

If this is done, the data should be checked to confirm that the daily operating times are consistent 
over the time period of the data. In this case, they were not. Figure 3-21 shows the average load 
profiles for March through July. 

Note how the operating hours, particularly at the end of the day, changed starting in May. When 
evaluating how to combine similar hours, changes in schedule must be considered. 
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Figure 3-21: Average Electricity Load Profiles (kW) for Specific Months by Daytype, 
Using 15-Minute Interval Data 

 

Another approach is to plot all the data in a scatter chart, filter the data for daytype and 
occupancy or other possible categories, and see if the scatter is reasonably tight. Figure 3-22 
shows the same data in a scatter chart. This data is similar to the data shown in Figure 3-13, but it 
uses hourly data rather than daily averages.  

Figure 3-22: Scatter Chart of Electrical Demand (kW) vs. Ambient Temperature, 
Using Hourly Data 
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In Figure 3-22, we see two general “clouds” of data, although they are not as distinct here as for 
the daily average data. So, the first thing is to evaluate what categories explain the individual 
clouds. Figure 3-23 shows the data filtered so it is only showing weekdays. 

Figure 3-23: Scatter Chart of Weekday Electrical Demand vs. Ambient Temperature,  
Using Hourly Data 

 

The clouds are still present, albeit a bit more distinct. Since that didn’t explain things, we’ll try 
plotting only the occupied hours, as shown in Figure 3-24. 

Figure 3-24: Scatter Chart of Weekday Electrical Demand (kW) During Occupancy vs. Ambient 
Temperature, Using Hourly Data 
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The data still shows a lot of scatter. Figure 3-25 shows a 4P model based on the hourly data for 
the occupied period. 

Figure 3-25: Scatter Chart of Weekday Electrical Demand (kW) During Occupancy vs. Ambient 
Temperature, Using Hourly Data 

 

Here is the resulting equation: 

 = IF (T<51.48, 819.15+-2.294*T, 193.09+9.855*T) 

Here are the statistics for the regression: 
R-squared: 0.47 

CV-RMSE: 5.6% 

Fractional Savings Uncertainty: 35.1% 

Savings Range: 5.0% ±0.9% 

Net Determination Bias: 0.000% 

Note that the fractional savings uncertainty is higher than for the daily model. So, in this case, 
the daily model would provide a better estimate of baseline energy use for calculating savings. 

This is not surprising in this case: the models all included nearly a year of data. Therefore, there 
was a sufficient range of ambient temperatures to clearly define the change point and slopes for 
the daily model. If the data had been collected for a shorter time period, it is possible that the 
daily model might include points on only one side of the change point, but the hourly model has 
sufficient data to cover both sides of the change point. These are the types of considerations that 
go into determining whether a daily or hourly model should be used. 
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Other Categorical Variables 

Practitioners should be aware that other categorical variables can be useful. Equipment status is 
obviously an important consideration. Related to this is the need to create separate models, 
depending upon which piece of equipment is on or how many pieces of equipment are on.  

Figure 3-26 shows the chiller plant electrical demand versus load. There are two scatter clouds. 
Recall that separate clouds are an indicator that categorical variables should be considered. In 
this case, one cloud is for a single chiller operating and the second cloud is for two chillers 
running. Note the overlap in tonnage served by one or two chillers. There was an opportunity to 
change the chiller staging at this plant for improved efficiency. 

Figure 3-26: Scatter Chart of Chiller Plant Electrical Demand (kW) vs. Plant Load (tons), Using 
Hourly Data 

 

Combining Multiple Models into One Model 

It may seem tedious to have all these separate models by category. However, they can be 
combined using IF statements, just as the change-point models use IF statements. For example, 
the IF statement could check for whether the time of day represents the occupied period; if so, it 
uses the equation created for the occupied model. If the time of day is part of the unoccupied 
period, another model is used. Note that the uncertainty is calculated for the individual category 
models. 
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4.  Measurements and Monitoring 
Application of these methods under an IPMVP Option C (Whole Building) or Option B (Retrofit 
Isolation – All Parameter Measurement) approach requires collection of extensive data sets. 
While energy models may be developed from monthly whole-building meter data, the utility of 
this methodology is derived from much shorter interval data, such as hourly or daily data. Short-
interval data provides the opportunity to understand what the key independent variables are and 
how they influence energy use in a building. This chapter provides background information on 
the type and potential sources of energy and independent variable data that may be used to 
develop energy models. 

4.1. Whole Building Energy Data 
Most utilities have high-demand rate categories for their large commercial and industrial 
customers. Typically, these customers have over 200 kW in peak electric demand. For these 
customers, the utility provides a time-of-use meter and records the electric energy use or demand 
in 15-minute intervals and provides the data back to the customer through a website. Buildings 
and facilities with high demand are generally large and have complicated HVAC, lighting, and 
control systems. These facilities have the most savings potential in large retrofit or retro-
commissioning projects. 

Many of these buildings have multiple electric meters. The data from these meters may be used 
to develop energy models if all the ECMs are downstream of one of the meters. Note that 
interactions between meters or impacts of the ECMs should be checked to assure that energy use 
on systems connected to other meters is not affected. 

A building may be connected to a central or district plant that operates multiple electric chillers. 
Btu meters are commonly installed at the service entrance to a building. The Btu meters calculate 
instantaneous thermal energy use from measured flow and entering and leaving chilled-water 
temperature difference. This data may be recorded by the Energy Management Control System 
(EMCS) or an alternate energy monitoring system. The amount of data varies, based on each 
building’s particular system and storage capacity. A well-written document on metering 
technologies, communications, and data storage, is available.P19F

20 

4.2. System Energy Data (Option B) 
For large, multi-component systems, such as an industrial process, a chilled water system, or an 
air distribution system, multiple ECMs may be implemented and the total energy savings 
resulting from those improvements must be verified. Measurements of energy use for the entire 

                                                 
20  Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, by Sullivan et al. for the Federal 

Energy Management Program (FEMP).  
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system may be required. However, energy-use meters that directly monitor the energy use of 
each component are limited. Some common equipment level data sources include: 

 Chiller electric energy. Many chiller control panels are equipped to provide analog 
output signals of chiller demand or amps. These output signals may be recorded by the 
building’s EMCS or independently installed data loggers.  

 Variable frequency drives (VFD) that modulate motor speed. Analog output signals 
of motor and inverter wattage or amperage from the VFD can be monitored in an EMCS. 
The desired output can often be selected by dip switches or programming on the VFD. 
The VFD output signal readings should be checked against readings from a reliable watt 
or amperage meter.  

Probably the most common sources of energy data are indirect. Equipment feedback status 
signals in a building’s EMCS indicate whether equipment is on or at what percent load it is 
operating. Generally, constant-load equipment is monitored with digital or binary on/off status 
signals, while variable-load equipment is monitored by its variable speed, position, or load 
signal. These signals can be converted to energy use data with the aid of simultaneous power 
measurements from instruments and independently installed power loggers.  

An example of a feedback signal for variable load equipment is the actual speed or output 
frequency of a VFD on a pump or fan motor, or the position of an inlet guide vane on an air 
handler fan. Figure 4-1 provides examples of both constant and variable speed feedback signals. 
These signals may serve as proxy variables for energy use if a relationship between the feedback 
signal and the equipment’s energy use can be determined.  

Figure 4-1: Fan Speed and Status of a Return Air Fan vs. Time 
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Constant load equipment feedback signals may be made into proxy energy variables by assigning 
the equipment power to it when it is operating. The equipment power may be determined from 
the average of multiple measurements of the equipment’s power when operating.  

Variable load equipment feedback signals may be made into proxy energy variables by 
developing a relationship between the feedback signal and the power at various loads, obtained 
by measurements. Multiple measurements may be made as the equipment is forced through its 
range of operation, or the feedback signal and power may be logged over a period of time to 
obtain the data. A regression technique may be used to develop the proxy energy variable 
relationship between the power and feedback signal. Figure 4-2 shows such a relationship 
between the VFD speed feedback signal and the fan power. 

Figure 4-2: Variable Load Proxy Energy Variable Example 

 

For a complete discussion of end-use monitoring associated with constant load and variable load 
equipment, refer to the BPA Verification by Equipment or End-Use Metering Protocol.P20F

21 

4.3. Required Independent Variables and Sources 
The primary independent variable data used to explain the variation in a building or system’s 
energy use are the ambient conditions (usually dry-bulb temperature), building operation 
schedule, and building occupancy. Sometimes a building’s internal heat and cooling loads are 
used when data is available. Some sources of this data are described in this section. 

                                                 
21  Hereinafter, End-Use Metering Protocol. 
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There are many sources of weather data available. Weather data from most airports around the 
United States is collected by the National Oceanographic and Atmospheric Administration 
(NOAA).P21F

22 
PThis data can be obtained through a subscription service at NOAA’s website. Other 

websites provide weather data as well; an extensive directory can be found in the websites listed 
below. Some services require a subscription; others offer the data for free. Most of the 
information needed for energy models, such as ambient conditions (including dry-bulb 
temperatures and wet-bulb temperatures or relative humidity) is provided by these sources. Data 
intervals are usually hourly, but can be as frequent as five minutes. Generally, over a year’s 
worth of data is available, up to a few weeks behind the current date. 

Weather data sources can be found at these websites: 

 NOAA Satellite and Information Service: National Climatic Data Center  

 GARD Analytics, Inc.: Building Simulation Weather Data Resources  

 Weather Underground, Inc.: WunderSearchP

®
P  

The building EMCS is a rich data source for independent variables. Often, ambient temperatures 
are trended and recorded in short time intervals. Equipment feedback status signals can verify the 
actual daily equipment operating schedule. Care should be taken to validate the data from the 
building EMCS. Poor sensor placement or poor calibration often plague EMCS ambient 
temperature sensor and relative humidity data.  

Time series data come with date and time stamps, which may be used to establish building 
operation schedules. Using calendar functions, weekdays, weekends, and holidays may be 
identified. Flag variables may be set up to identify different hours of the day or days of the week. 
These flags may be used to separate the energy data into operating and non-operating periods for 
separate energy modeling analysis. A useful spreadsheet add-in tool that helps develop these 
variables is described in Chapter 7, Software Tools to Assist with Energy Modeling. 

4.4. EMCS as a Source of Data 
An EMCS’ capability to trend and store data varies widely, depending on the manufacturer, 
vintage, and installed capabilities of the system. Users are well aware that establishing trends and 
recovering the data on many EMCS can be a very cumbersome process, often requiring a 
controls technician familiar with the system. Trends are seldom stored in a format that is 
accessible without use of proprietary software. There may also be data storage limits to a 
system’s trending capability, requiring frequent downloading of data before the trend file is 
halted, reset, or overwritten. Establishing many trend functions may slow down the EMCS’ 
ability to perform its prime function. While use of trended EMCS data is a rich source, these real 
limits often hinder the effort for M&V purposes.  

                                                 
22  NOAA Satellite and Information Service National Climatic Data Center website.  



 

Verification by Energy Modeling Protocol 
49 

More recently manufactured EMCS are responding to the market’s need for more trending 
capability, more storage capability, and easier access to the data. An EMCS not only provides 
valuable data, it may also serve as a tracking system to help maintain good energy performance.  

4.5. Temperature Data 
Temperature is frequently the independent variable in energy models. When available, 
temperature data from the site may be used. However, site temperature data should not be used 
blindly, without consideration of its accuracy and suitability. Here are some common issues and 
considerations in the use of site temperature data: 

 Site temperature measurements may be higher than the actual air temperature at the 
measurement device, due to inadequate solar shielding. 

 Site temperatures on roofs may be correct, but higher than ambient air temperatures 
around the building. 

 Site temperatures may be taken inside air handler unit (AHU) outside air intakes. They 
may give good readings when the AHU fan is running, but when off, damper leakage 
may allow interior air to exit through the air intake, biasing the reading. 

These situations may be able to be evaluated by inspection of the data or by comparison of the 
site data with data from the nearest national weather station. 

In the first situation, the weather station data may be able to be substituted for the site data, or 
used to identify spikes in the site data due to solar effects, which may then be reduced to a more 
reasonable value. Alternatively, it may be possible to filter out the times or days with such 
spikes. Note that the effect of any of these changes on the uncertainty in the model will not be 
known. 

In the second situation, the choice of whether to use site data or national weather station data 
may be dependent upon the measures being evaluated, and/or upon the measurement boundary. 
Upon which temperature are the building loads and resultant electrical demand most dependent? 
This is really just like the typical situation where the most important independent variable needs 
to be selected. If the measurement boundary is around the whole building, then perhaps the 
weather station data should be used, especially if the outside air intakes are on the sides of the 
building. However, if the building uses 100% outside air, and the outside air intakes are on the 
roof, then it might be more appropriate to use the site temperature data. 

Handling the third situation involves the same considerations as the first two. If the AHU is 
seldom off or the M&V calculations are most important for times when the fan is on, then site 
data may be appropriate. However, if the off times are significant and the M&V includes times 
when the fan is off, then the weather station data may be more appropriate. 

In nearly all cases, the site weather data should be cross-checked with the nearest weather station 
data to make sure it is reasonable. 
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5. Uncertainty 
Energy usage modeling relying on regression analysis yields estimates, or predictions, that will 
not be 100% accurate. Thus, modelers speak of the uncertainty of the estimates, that is, 
uncertainty in the predicted y-value. Uncertainty in regression analysis results from three 
principal sources: 

 Measurement uncertainty or measurement error, 

 Coverage error, and 

 Regression uncertainty or model uncertainty. 

Some sources of uncertainty, such as regression model uncertainty within the range of 
independent variables, can be estimated using accepted formulas. Other sources of uncertainty, 
such as model misspecification or extrapolation due to poor coverage are difficult to quantify. 

5.1. Measurement Uncertainty 
Measurement uncertainty has two principal components: measurement bias and measurement 
precision. Bias relates to issues of calibration and accuracy; precision relates to the magnitude of 
random variation that occurs when multiple measurements are made. (See BPA’s reference 
guides Sampling for M&V and Regression for M&V for fuller discussion of these concepts.) The 
concept of measurement uncertainty as it relates to regression analysis pertains to the 
independent variables, as any measurement error in the dependent variable contributes to model 
uncertainty, with the error contributing to the model residual.  

Instruments for acquiring measurements should be of sufficient resolution and precision that the 
uncertainties in measurements are small relative to the regression uncertainty. Measurement bias 
due to measuring equipment error should be eliminated through calibration, and careful 
instrumentation design and installation should be used to minimize other measurement bias 
errors. Installation criteria for accurate measurement, such as the need for a straight duct of a 
specific number of equivalent duct diameters for a flow measurement, may be important. 

Note that, even though an installation limitation may introduce the same bias to the pre and post 
periods, the fact that the bias is the same may not mean that the savings estimate is not biased. 
Whether or not there is a savings bias is dependent upon the type of bias (that is, additive or 
multiplicative) and how the measurement is mathematically used. 

As applicable, when possible, utility meters should be used for energy-use measurements. By 
M&V convention, utility meter data is considered to have zero uncertainty for savings estimates. 
Similarly, data from a nearby National Oceanic and Atmospheric Administration (NOAA) 
weather station should be used for weather measurements, but such measurements should be 
verified to be representative of the conditions at the treated building. NOAA sites are far less 
likely to have biases or inaccuracies due to solar effects and sensor calibration errors than site 
measurements. 
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For a thorough discussion of measurements, refer to Section 6, Instrumentation, and Annex A, 
Physical Measurements, within ASHRAE Guideline 14, Measurement of Energy, Demand, and 
Water Savings. 

5.2. Coverage Error 
Coverage error occurs when an M&V data set does not fully “cover” the range of conditions that 
drive energy use, that is the full range of building or system operating conditions. Measurements 
should be conducted for a sufficient period to capture a significant range of the independent 
variable. Beyond that, no definitive criteria can be provided regarding the sufficiency of shorter-
term data for annual extrapolation. ASHRAE Research Project 1404, Measurement, Modeling, 
Analysis and Reporting Protocols for Short-term M&V of Whole Building Energy Performance 
provides some guidance. 

In a production environment, the consistency of production will determine this length of time. 
When weather is the independent variable, the season and climate will determine the length of 
time necessary. If seasonal variations in weather are minor, a relatively short time may be 
possible and still cover a wide range of conditions. If seasonal variations are significant, longer 
periods (up to a year) may be advisable. 

Measurements of the dependent and independent variables must cover the same time periods. 

5.3. Regression Uncertainty 
Regression uncertainty (also referred to as savings uncertainty) results both from modeling errors 
– explanatory variables are omitted from the model or an incorrect functional form is specified – 
and because people’s unpredictable behaviors affect energy use. Uncertainty in regression 
typically refers to the uncertainty in the output from a regression; uncertainty in the regression 
coefficients is typically referred to in a more explicit manner as the uncertainty of the slope. 

A goal of any M&V plan should be to minimize uncertainty in the savings estimate (regression 
uncertainty). More specifically, the goal should be to make the uncertainty small relative to the 
savings. ASHRAE Guideline 14-2014, Annex B refers to this as the fractional savings uncertainty 
(FSU).P22F

23
P  

Generally, factors that affect regression modeling uncertainty include: 

 Number of points used in the baseline regression 

 Number of points in the post-installation period 

 Number of significant independent variables included in the regression 

                                                 
23  Refer to ASHRAE Guideline 14-2014, Annex B: Determination of Savings Uncertainty for a more detailed 

discussion of savings uncertainty than is provided here. 
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One way to reduce the fractional savings uncertainty is to use more data. Gathering data over a 
longer period, and/or at more frequent intervals, will generally reduce the uncertainty. Note, 
though, that as data is gathered at more frequent intervals, this will increase serial autocorrelation 
– each reading becomes more significantly related to the prior reading. Uncertainty estimates 
must account for this autocorrelation. Costs may be affected by increasing the length of time 
required to collect data or monitoring additional variables. 

Another way to reduce the fractional savings uncertainty is to include more relevant independent 
variables. The t-statistic and p-value should be used to check for the relevance of additional 
independent variables. If multiple continuous independent variables are significant, the 
practitioner should not use the Indexing Protocol. However, the uncertainty in an index model 
can sometimes be reduced by including one or two categorical variables (discussed more 
subsequently). Note that the categorical variables may be different in the baseline and post 
scenarios, and care should be taken to check their significance. 

As with all M&V protocols, the emphasis on accuracy needs to be balanced against the level of 
savings and cost. Parametric analyses may be exercised on the M&V methodology, or if 
measurement uncertainty is a minimum, then factors affecting regression uncertainty may be 
assessed to determine the amount of effort and cost needed to increase accuracy. 

5.4. Current Status of Uncertainty Calculations 
The best treatment of uncertainty in energy regressions is probably in ASHRAE 
Guideline 14-2014, Annex B: Determination of Savings Uncertainty. In Annex B, the basis for 
calculating uncertainty is provided, and its sources and treatment are described. Identifying 
sources of uncertainty, and quantifying and propagating them in savings calculations, is often 
viewed by energy engineers as a cumbersome process with little reward or justification.  

In Annex B, a streamlined approach that enables the analyst to gain a reasonable estimate of 
uncertainty that can both help select an appropriate M&V approach and enable savings to be 
stated within confidence bounds is described. For more detailed discussion on the definition of 
uncertainty, description of uncertainty sources, and development of uncertainty formulae, the 
reader is referred to Annex B of ASHRAE Guideline 14-2014.  

For a broader discussion of uncertainty concepts within the BPA M&V protocol documents, 
refer to the Regression Reference Guide. Further information on the source of some of the 
uncertainty formulae can be found in the documents from the following resources: 

 Reddy, T., and D. Claridge. 2000. “Uncertainty of Measured Energy Savings from 
Statistical Baseline Models.” International Journal of HVAC&R Research. 

 Kissock, J., J. Haberl, and D. Claridge. 2004. Inverse Modeling Toolkit: Numerical 
Algorithms. (ASHRAE RP-1050).  

 IPMVP. 2018. International Performance Measurement and Verification Protocol: 
Uncertainty Assessment for IPMVP. EVO 10100-1:2018. Washington, D.C.: Efficiency 
Valuation Organization. Available at: 37Thttps://evo-world.org/en/products-services-
mainmenu-en/protocols/ipmvp37T 

https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
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5.5. Determining Model Sufficiency 
This section focuses on the concept of fractional savings uncertainty, as described in ASHRAE 
Guideline 14, Annex B. The key approach to understanding whether the model is sufficient is to 
evaluate the fractional savings uncertainty, which is the uncertainty divided by the savings. 
During the baseline period, this is based on expected savings; during the post period, actual 
estimated savings can be used.  

Intuitively, the smaller the fractional savings uncertainty, the better – more precise – the savings 
estimate. ASHRAE guidelines are that the level of uncertainty must be less than 50% of the 
annual reported savings, at a confidence level of 68%. This is the same as a fractional savings 
uncertainty less than 0.5 at the 68% confidence level. This is a pretty modest requirement, since 
it uses quite a low confidence level. Specific projects or programs may require different 
precision and confidence. 

Fractional savings uncertainty is defined as:  

 Fractional Savings Uncertainty (FSU): ∆ERsave,mR / ERsave,m 

where: ERsave,mR  =  total savings over m periods 

 ∆ERsave,mR  =  the calculated uncertainty in the total savings over the same time 
period 

Following are relationships among energy model parameters that may be used to determine the 
fractional savings uncertainty. 

5.5.1. Models with Uncorrelated Residuals 
Models with uncorrelated residuals are models where each point does not have a relationship 
with the previous point, just a relationship with the independent variable. For these types of 
models, the equation is:  

 FSU = 𝛥𝛥𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚
= 𝑡𝑡 ∗

1.26∗𝐶𝐶𝐶𝐶∗��1+2𝑛𝑛�∗
1
𝑚𝑚

𝐹𝐹
 

where: CV = the coefficient of variation of the root mean squared error CV(RMSE) 

 𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 100 ∗ �∑ (𝐸𝐸𝑖𝑖−𝐸𝐸�𝑖𝑖)2/(𝑛𝑛−𝑝𝑝)𝑖𝑖
𝐸𝐸�

 

where: F = Savings fraction = ERsaveR/ERbaseline 

 ERbaseline  R=  Adjusted baseline energy predicted for the reporting period or 
fixed conditions 

 t = Student’s t-statistic 

 ( )Ri R= measured value 
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 (^)RiR  =  predicted value 

 (_)RiR  =  average value 

 n =  number of points in the baseline period 

 m =  number of points in the post period 

 p = the number of model parameters 

The t-statistic is evaluated at the desired confidence level. The numerator of the fractional 
savings uncertainty is the width of the confidence interval at the confidence level for which the 
t-statistic was evaluated. See the BPA Regression Reference Guide for further discussion of the 
t-statistic and CV(RMSE). 

Advanced practitioners should note that the constant factor 1.26 in the FSU equation above can 
be replaced with a calculated value “Y” using the number of measurements in the post period 
(m) assuming the data are monthly or daily. (IPMVP, 2018) Equations for Y are shown below.  

 Polynomial Correction Factor for Monthly Data 

𝑌𝑌 = (−0.00022 ∗ 𝑚𝑚2) + (0.03306 ∗ 𝑚𝑚) + 0.94054 

 Polynomial Correction Factor for Daily Data 

𝑌𝑌 = (−0.00024 ∗ 𝑚𝑚2) + (0.03535 ∗ 𝑚𝑚) + 1.00286 

5.5.2. Models with Correlated Residuals 
Models with correlated residuals are models where each point has a relationship with the points 
associated with recent prior timestamps. There is the potential for correlated residuals (known as 
time-series autocorrelation) when the time unit is short, such as with hourly models. There can 
also be autocorrelation with daily models. 

For avoided energy use models with correlated residuals, the equation is just slightly different: 

 
𝛥𝛥𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚
= 𝑡𝑡 ∗

1.26∗𝐶𝐶𝐶𝐶∗�𝑛𝑛
𝑛𝑛′∗�1+

2
𝑛𝑛′�∗

1
𝑚𝑚

𝐹𝐹
 

where: n'  = the effective number of points after accounting for autocorrelation 

 𝑛𝑛′ = 𝑛𝑛 ∗ 1−𝜌𝜌
1+𝜌𝜌

 

where: 𝜌𝜌 = the autocorrelation coefficient  
(the square root of the RP

2
P calculated for the correlation between the 

residuals and the residuals for the prior time period)  

Using the equations above, the CV necessary to achieve a required fractional savings uncertainty 
can be estimated if the required confidence level, expected savings percentage, and number of 
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pre-and post- data points are known. The following tables provide the required CV times the 
expected savings fraction and the required fractional savings uncertainty. These are approximate 
values based on the specified number of monitored data points. 

In the following tables:  

CV = CV(RMSE) 

F  = expected savings fraction 

FSU  = fractional savings uncertainty 

rho  = autocorrelation coefficient 

n  =  number of baseline points 

m  = number of post-implementation points 

The reason that uncertainty formulas are different for models with correlated residuals is because 
one of the four key conditions of OLS regression is violated. As discussed in Section 3 of the 
Regression Guide, OLS regression requires that the errors (residuals) of the regression model be 
independent, so the residual at time t must not be correlated with the residual at time t-1 or at any 
other time period. It is important to note that the regression coefficient estimates remain unbiased 
in the presence of autocorrelation, but the uncertainty calculations may not. Thus, any 
uncertainty inferences drawn may be incorrect. Specifically, the uncertainty estimates will be 
understated in the presence of autocorrelation because each data point does not contain 
additional information about the relationship between the dependent and independent variable(s). 
The purpose of the n’ adjustment is to discount the number of observations used in the 
uncertainty calculations by the extent of the first-order autocorrelation. 

Table 5-1 shows the maximum allowable CV*F/FSU to meet the ± 50% FSU guideline at the 
68% confidence level for monthly data, with at least 12 months of data in the baseline period. 
Table 5-2 shows the maximum allowable CV*F/FSU for daily data, with at least 30 days of data 
in the baseline period. Table 5-3 shows the maximum allowable CV*F/FSU for hourly data, with 
at least 168 hours (7 days) of data in the baseline period. 

Table 5-1: Maximum Acceptable CV*F/FSU vs. Confidence Level, Autocorrelation Coefficient, 
 and Quantity of Post-Period Data, for Monthly Data 

Maximum Allowed CV *  
F / FSU 

M 
 

Confidence 
Level 

rho 2 4 6 8 12 

68% 0.00 0.010 0.014 0.017 0.020 0.024 

80% 0.00 0.008 0.011 0.013 0.015 0.019 

90% 0.00 0.006 0.008 0.010 0.011 0.014 

95% 0.00 0.005 0.007 0.008 0.009 0.011 
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Table 5-2: Maximum Acceptable CV*F/FSU vs. Confidence Level, Autocorrelation Coefficient,  
and Quantity of Post-Period Data, for Daily Data 

Maximum Allowed CV *  
F / FSU 

M 
 

Confidence 
Level 

rho 336 720 1440 4380 8760 

68% 0.00 0.043 0.061 0.075 0.106 0.152 

 0.25 0.033 0.047 0.058 0.082 0.117 

 0.50 0.024 0.035 0.043 0.061 0.087 

 0.75 0.015 0.022 0.027 0.039 0.056 

80% 0.00 0.033 0.047 0.058 0.083 0.118 

 0.25 0.025 0.036 0.045 0.064 0.091 

 0.50 0.019 0.027 0.033 0.047 0.068 

 0.75 0.012 0.017 0.021 0.030 0.044 

90% 0.00 0.026 0.037 0.045 0.064 0.092 

 0.25 0.020 0.028 0.035 0.050 0.071 

 0.50 0.014 0.021 0.026 0.037 0.053 

 0.75 0.009 0.013 0.016 0.024 0.034 

95% 0.00 0.021 0.031 0.038 0.054 0.077 
 0.25 0.017 0.024 0.029 0.042 0.059 
 0.50 0.012 0.017 0.022 0.031 0.044 
 0.75 0.008 0.011 0.014 0.020 0.029 

Table 5-3: Maximum Acceptable CV*F/FSU vs. Confidence Level, Autocorrelation Coefficient,  
and Quantity of Post Period Data, for Hourly Data 

Maximum Allowed CV *  
F / FSU 

M 
 

Confidence 
Level 

rho 336 720 1440 4380 8760 

68% 0.00 0.113 0.166 0.234 0.409 0.578 

 0.25 0.084 0.123 0.175 0.305 0.431 

 0.50 0.055 0.080 0.114 0.199 0.282 

 0.75 0.088 0.128 0.182 0.317 0.449 

80% 0.00 0.065 0.096 0.136 0.236 0.335 

 0.25 0.042 0.062 0.089 0.155 0.219 

 0.50 0.068 0.100 0.142 0.247 0.350 

 0.75 0.051 0.075 0.106 0.184 0.261 

Continued 
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Maximum Allowed CV *  
F / FSU 

M 
 

Confidence 
Level 

rho 336 720 1440 4380 8760 

90% 0.00 0.033 0.049 0.069 0.121 0.171 

 0.25 0.057 0.084 0.119 0.207 0.293 

 0.50 0.043 0.063 0.089 0.155 0.219 

 0.75 0.028 0.041 0.058 0.101 0.143 

95% 0.00 0.113 0.166 0.234 0.409 0.578 
 0.25 0.084 0.123 0.175 0.305 0.431 
 0.50 0.055 0.080 0.114 0.199 0.282 
 0.75 0.088 0.128 0.182 0.317 0.449 

There are other methods for dealing with autocorrelation that are outside the scope of this 
protocol. The Uncertainty Guide for IPMVP includes a discussion of the Newey-West method to 
adjust OLS regression calculations to address autocorrelation. There are also techniques such as 
ARMA (autoregressive moving average) and ARIMA (autoregressive integrated moving 
average) that incorporate the time-series nature of the data into the functional form of the model.  

5.6. Issues with Current Status of Uncertainty 
Calculations 

5.6.1. Extrapolation 
The most significant issue regarding uncertainty of savings using energy models is probably 
extrapolation. For simple linear regression, there are clear equations from classical statistics that 
address the regression uncertainty, including the increased uncertainty toward the extremes of 
the independent variables used for the regression. However, the equations used for fractional 
savings uncertainty are simplifications and provide a constant uncertainty over the range of 
independent variables. Therefore, when extrapolating out-of-sample, those equations can 
significantly underestimate the uncertainty, even if the model form is correct.  

The best approach is to use fractional savings uncertainty during the baseline time period and 
make sure that the model includes adequate coverage of the range of independent variable(s) to 
minimize the need for extrapolation when projecting the baseline to the post conditions. If the 
baseline model does not include the full range of the independent variable(s), the uncertainty will 
be underestimated.  

An alternate approach is to treat each segment of the change-point model as a simple regression 
and use the complete calculation for uncertainty using the confidence or prediction intervals 
associated with the desired confidence level. Then, the uncertainty will increase toward the 
extremes of the independent variable and beyond, allowing the uncertainty in extrapolation to 
increase. 
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5.6.2. Model Form and Extrapolation 
Note that the model form must still be correct for the extrapolated region. If not, then the 
extrapolation will not be correct. For a model with ambient temperature as the independent 
variable, one case where the model form would not be correct in the extrapolated region is if the 
HVAC cooling runs out of capacity at high temperatures and the model did not cover those high 
temperatures. In this case, the slope of the model should get flatter at the high temperatures, but 
the model wouldn’t show it, thereby overestimating energy use and demand at those conditions. 

A common issue associated with extrapolation may be neglecting the change in cooling slope 
associated with economizer operation. In this case, if the temperature range did not cover the 
high temperatures and all the data above the cooling change point was at the same slope (no 
slope change associated with the economizer), the slope would be too high for the upper range of 
the data and projections of energy use at higher temperatures would be too high. Figure 5-1 
illustrates what happens when extrapolating with an incomplete range of temperature data, using 
real data, but with the data above 80º F removed; the chart shows a 4P regression using all the 
data above 55º F. The results of a linear 2P regression are included on the chart as the red line. 
Note that the results for the two regressions are fairly close over most of the range, but deviate a 
bit more at the warmest temperatures. The 4P model predicts the demand at 90ºF to be 
1,636 kW, and the 2P model predicts it to be 5% higher, at 1,713 kW. 

Figure 5-1: Comparison of 2P and 4P Models of Electrical Demand (kW) vs.  
Ambient Temperature, Using a Full Year of Data 

 

Figure 5-2 shows what happens without the full range of data. In this case, the data above 78º F 
have been taken out of the data set. The change point was calculated to be the same value, 67º F, 
but there is a difference in expected electrical demand at 90º F between the 2P and 4P models. 
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The 4P model projects the electrical demand to be 1,613 kW, which is close (within 1.4%) to the 
value predicted using a 4P model with all the data, 1,636 kW. However, the 2P model now 
predicts the electrical demand to be 1,750 kW, 9% higher than the corresponding value for the 
4P model, and 7% higher than the value obtained by a 4P model using all the data. 

Figure 5-2: Comparison of 2P and 4P Models of Electrical Demand vs.  
Ambient Temperature, Using Less Than a Full Year of Data 

 

In this case, there was only a minor difference in slope between the economizer regime and the 
regime with only mechanical cooling. This effect would be more significant where the slope 
change is greater. 

5.7. Uncertainty in Reporting Period Savings (Avoided 
Energy Use Type of Savings) 

If the baseline model includes the full range of the independent variable, the uncertainty in the 
reporting period savings will be the same as the uncertainty in the baseline model. This assumes 
there is no measurement uncertainty in the post period, such as when the energy data comes from 
a revenue-grade utility meter.  

The savings, with uncertainty, would be expressed as:   

 ERsave,mR ± ∆ERsave,mR ÷ 2 

Since ∆ERsave,mR comes from the fractional savings uncertainty, which in turn requires an input 
t-statistic, which is based on the input confidence level, it has all the components needed for a 
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complete statement of the precision and confidence of the savings estimate. If the t-statistic was 
evaluated at the 90% confidence level, then savings would be stated as: 

 Savings = ERsave,mR ± ∆ERsave,mR ÷ 2, at the 90% confidence level 

5.8. Uncertainty in Annual Models 
As described in Section 5.3, the uncertainty in annual models, based on data that covers less than 
one year, will be underestimated using the fractional savings uncertainty if the full range that the 
independent variable would see is not covered in the dataset used for the model. A better result 
may be obtained by using the equations for prediction intervals described in the BPA Regression 
Reference Guide; but since this would be based on extrapolation, it is unknown how much better 
it would be.  

5.9. Uncertainty in Annual Savings (Normalized Savings) 
Normalized savings uses two models – baseline and post – that are both adjusted to fixed 
conditions. If both models cover the full range of the independent variable and extrapolation 
uncertainty can be ignored, then the uncertainty can just be calculated by quadrature, which 
means that the uncertainty components are combined by root-sum-squares. In this case, the 
uncertainty components are the uncertainty in the baseline energy use projected to the fixed 
conditions and the uncertainty in the post-period energy use projected to the fixed conditions: 

 (∆ERsaveR)P

2
P = ((∆ERbaseR)P

2
P+(∆ERpostR)P

 2
P) 

Assuming, again, that the t-statistic was for the 90% confidence level, then: 

 Annual Savings = ERsaveR ± sqrt((∆ERbaseR)P

2
P+(∆ERpostR)P

 2
P)) 
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6. Minimum Reporting Requirements 

6.1. Measurement and Verification Plan 
6.1.1. Essential Elements of the Measurement and Verification Plan 
Proper savings verification requires planning and preparation. The IPMVP lists several 
requirements for a fully adherent M&V plan.P23F

24
P The previous sections in this Energy Modeling 

Protocol describe methods to verify savings in equipment and end uses. This protocol describes 
planning requirements as well as specific measurement and analysis activities in the baseline and 
in the post-installation periods. Documenting in an M&V Plan how these requirements will be 
met is important so that others who subsequently become involved in the project can get a full 
understanding of the project’s history and progress.  

The following are the essential items in documenting a Savings Verification Plan:  

 Measurement Boundary: Define the measurement boundary to encompass the building 
or system within which the savings will be verified. This boundary can be a whole 
building, all equipment connected to one of multiple meters in a building, systems 
connected to a building submeter, or a specific system within the building. Systems may 
be defined as one of the major energy-consuming systems within the building, or by their 
function (such as air handling or chilled water system). In industrial applications, systems 
may also be defined by their process. 

 Baseline Equipment and Conditions: Document the end-use baseline systems affected 
by the ECMs. Document equipment configurations, operational characteristics (operating 
practices or operation schedules that characterizes its hours of use), and equipment 
inventories, sizes, types, and conditions.  

 Energy and Independent Variable Data: Include all energy data from spot 
measurements and short- or long-term monitoring from each source. Describe: 

■ The parameters needed to characterize equipment load, 

■ The sources of the energy and independent variable data and the time interval at 
which they are monitored, 

■ The start and duration of monitoring for both the baseline and post-installation 
periods, and 

■ Any needed corrections to the data. 

 Reporting Period: Describe the length of the reporting period and the activities that will 
be conducted, including data collection and sources.  

                                                 
24  Chapter 7, IPMVP Core Concepts. 2016 
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 Analysis Procedure: Describe how the baseline and post-installation energy use or 
demand will be adjusted to a common set of conditions. Describe the procedures used to 
prepare the data. Describe the procedures used for analyzing the data and determining 
savings. Describe methods for identifying and energy usage adjustments for Non-Routine 
Events, Describe any extrapolations of energy use or savings beyond the reporting period. 
Describe how savings uncertainty (if required) will be estimated. Document all 
assumptions. 

 Savings Verification Reports: Describe what results will be included in the savings 
reports. Describe what data and calculations will be provided. Describe when savings will 
be reported for the project. Indicate the reporting format to be used. See the section below 
regarding the Savings Verification Report for the minimum requirements. 

6.1.2. M&V Plan Additional Elements 
The IPMVP describes several other elements of a good M&V plan. These items are good 
practice in general, but not necessary for every project. Many of them are provided here for 
reference and consideration for inclusion in M&V Plans written under this application guide.  

 Energy Prices: Document the relevant energy prices to be used to value the savings. 
This can be a blended electric rate or a schedule of rates based on time-of-use. Note that 
the latter will add significant complexity to the calculations. 

 Measurement Instrument Specifications: Document the instruments used to obtain the 
data used in the calculations, including their rated accuracy and range. Identify the last 
instrument calibration date. 

 Budget: Estimate the budget required for the savings verification activity. Estimate labor 
and material (such as meters and instruments, and associated safety equipment) costs and 
provide an approximate schedule for when activities will occur. 

 Quality Assurance: Describe any quality assurance activities that will be conducted as 
part of this M&V project. This may include how data is validated, how IPMVP Option A 
estimates are checked, identifying other parties who will review the work, and so on. 

6.1.3. Documentation for BPA Database 
The documentation should also include the following information to support review and 
inclusion of the project and measure in the BPA energy efficiency reporting database: 

 Utility name 

 Utility program 

 Sector (commercial/industrial/residential) 

 Existing building or new construction 

 Site address (this will be used to establish the climate zone) 
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 Building type (examples: office, school, hospital) 

 Building size, square feet 

 Affected end uses (examples: HVAC, interior lights, exterior lights, receptacle plugs, 
DHW) 

 Affected system (examples under HVAC: cooling plant, heating plant, HVAC fans, 
terminal units, controls) 

 Affected equipment type (examples under cooling plant: chiller, packaged unit, cooling 
tower, pumps) 

 Measure type (broad category) 

 Measure name (specific category) 

6.2. Savings Verification Report 
6.2.1. General Verification Report Requirements Based on IPMVP 
After the M&V calculations have been completed, the savings and actual M&V process used 
need to be documented.  

Per the IPMVP, the Savings Verification Report should follow the savings verification report 
requirements described in the project’s M&V Plan. Any deviations from the M&V Plan must be 
clearly described. If the M&V method followed the M&V Plan, then the information in the 
M&V Plan does not need to be repeated, but can just reference the plan. However, deviations 
from the planned method, measurement boundary, baseline characteristics, etc. necessitate new 
descriptions.  

IPMVP Core Concepts Chapter 7.4, M&V Reports, generally requires the following: 

 Report both energy and cost savings. 

 Report the data relevant to the reporting period, including the measurement period and 
the associated energy data and independent variables. Any changes to the observed data 
must be described and justified. 

 Describe any non-routine baseline adjustments, including the details of how the 
adjustments were calculated. 

 Report the energy prices or rates used in the cost-savings calculations. 

In addition, actual data for baseline and post-period energy use should both be reported.  
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6.2.2. Additional Savings Verification Report Requirements 

Load and Schedule Relationships 

Determine the relationships between load and continuous variables such as temperature, air or 
water flow, pressure, and so on. This includes the relationships of indicator variables such as 
daytypes and seasons to energy consumption. Variable load information, energy models, and 
load correlations for engineering calculations are all similar and should be shown graphically in 
an x-y (scatter chart), as well as an equation or table.  

Savings Verification Report Information 

The report should include the following information in most cases. It may be organized in this 
order with a separate section for each of these items, or in another order or organization that 
makes sense for a program or project.  

1. The data for the baseline period, including the time period, monitoring intervals, and data 
points should be described. 

2. The load and schedule for the baseline period, and any relationships associated with 
variable loads or schedules, should be clearly defined. 

3. The impact of the ECM on the load or hours-of-use in the reporting period should be 
described. 

4. The data for the reporting period, including the time period, monitoring intervals, and 
data points should be described. 

5. The load and schedule, and any relationships associated with variable loads or schedules, 
should be clearly defined for the reporting period. 

6. The equations used to estimate baseline consumption, reporting period consumption, and 
savings should be listed and explained.  

7. Report consumption (and where relevant, demand), as well as savings, since this 
facilitates review and reasonableness checks. 

8. As required by IPMVP, report the energy prices or rates used in the cost savings 
calculations.  

9. Also, as required by IPMVP, report both energy and cost savings. 

10. Provide verification of potential to generate savings. 

Post Installation Verification of Potential to Generate Savings 

IPMVP Core Concepts Section 5.5 suggests that, “Operational verification serves as a low cost 
initial step for assessing savings potential or verifying performance over time and should be 
included in the M&V Plan and precede other post-installation saving verification activities.” 
Therefore, an IPMVP-adherent process requires evidence that the efficiency measures have the 
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potential to generate savings. BPA may require short-term monitoring, spot measurements, 
production data, or other forms of verification to confirm potential. 

Verification includes notation of any changes to the project subsequent to the M&V plan. If the 
project changed, the energy and demand savings should be recalculated based on as-installed 
conditions. Data and analysis from metering performed before or after installation should be 
included with the calculations. 

In general, verification of potential to generate savings can take either of two forms: 

  Installation verification 

 Operational verification 

Installation Verification  

Installation verification is the less rigorous of the two verification methods. It demonstrates the 
measures were installed as planned. This demonstration may vary by measure. Project 
developers are required to describe the evidence and documentation they plan to provide to 
demonstrate that the measures were installed, and this evidence and documentation belongs in 
the savings verification report. 

Examples of installation verification include:  

 Photographs of new equipment 

 Photographs of new control set-points 

 Screen captures from EMCS 

 Invoices from service contractors (invoices should not be the sole form of evidence, but 
may supplement other verification documentation). 

Operational Verification 

Operational verification demonstrates that in the post-installation period, the system is operating 
(or not operating) as modeled in the calculations. It is based on visualization of operational data 
(as opposed to energy data) collected during one or more site visits after the measures have been 
installed. 

Operational verification is in addition to installation verification and documentation should 
include the same types of evidence as for installation verification. In addition, the data logging, 
control system trending, or functional tests used to establish baseline shall be repeated to 
demonstrate that operations have been improved. Documentation of the commissioning of the 
new systems or equipment can be used for operational verification. 
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If the collected post-installation data, test results, and/or commissioning indicate less than 
predicted performance, or that the measures were not installed as assumed in the savings 
calculations (for example, due to incorrect or partial installation, or other circumstance), either: 

 Take action to help the customer fully install the measure properly and then re-verify it 
using these procedures; or 

 Use the same calculation methodology with the post-installation data to calculate a 
revised measure savings estimate.  

Choice of Verification Method 

Common, well-known measures, measures with low expected savings, and measures whose 
savings estimates have considerable certainty, may need only installation verification. Measures 
with large savings and measures with less certain savings (whose savings can vary greatly 
dependent upon application) typically require operational verification.  

Thus, there is no hard-and-fast rule for this choice. The analyst should recommend a verification 
method and the evidence expected to be presented for verification when submitting calculations 
or simulations. The final choice of verification method and evidence will be made by the 
reviewer. 
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7. Software Tools to Assist with Energy 
Modeling 

7.1. Introduction 
This chapter reviews several common software tools for energy modeling, including freeware 
tools. The analyst is referred to the appropriate websites for additional information about 
particular features and how to obtain the application. This chapter focuses on those features that 
support energy model using the method presented in this protocol. It represents a professional 
assessment of these tools, but does not endorse any particular commercial products.  

As discussed in Section 2.4, Disadvantages of this Protocol, a significant challenge in 
developing energy models from short-interval data for M&V is that there is no single tool that 
provides all of the needed capabilities. Fortunately, most of the work can be expedited by using 
several tools synergistically. 

As described in Section 3.1, Basic Procedure, the modeling and regression process includes 
these steps: 

1. Identify all independent variables.  

2. Collect datasets. 

3. Clean the data. 

4. Graph the data. 

5. Select and develop a model. 

6. Validate the model. 

7. Perform an analysis of residuals. 

Software tools can assist with Steps 3 through 7. 

For M&V, there are additional steps needed: 

1. Combine multiple sub-models (one per category) into an overall model. 

2. Project the baseline model to the post conditions or projection of baseline and post 
models to the fixed conditions. 

3. Calculate savings. 

4. Extrapolate reported period savings, when less than a year, to annual savings. 

5. Estimate the uncertainty in the savings. 
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Software tools are also needed for these steps. The following sections discuss those tools that are 
useful in this process. 

7.2. ECAM 
The Energy Charting and Metrics (ECAM) Tool is a freeware spreadsheet tool that runs in Excel 
2003, 2007, 2010, and 2016. It’s latest version is distributed by SBW Consulting through its 
website 37Twww.sbwconsulting.com/ecam37T. At the time of the revision of this protocol, the website 
had Version 5.0 revision 8 of ECAM. AS its name implies, ECAM is a flexible tool designed for 
charting energy data and creating metrics for performance tracking. It is particularly useful in 
categorizing, synchronizing, and charting the data (Steps 1, 3, and 4 in the modeling process). It 
also includes energy modeling based M&V capability based on change-point modeling originally 
developed under ASHRAE RP-1050. 

7.2.1. Significant Features for Energy Modeling & M&V 
ECAM has numerous features that support energy modeling. The program makes it easy to 
aggregate data across time to get hourly or daily energy-use totals or averages, and average 
temperatures or degree-days. It does require that the user start with consistent time interval data 
of shorter intervals that can be aggregated to hourly or daily.  

ECAM makes it very easy to chart energy data in a variety of forms. The most important chart 
for modeling is the x-y or scatter chart. ECAM automates the creation of scatter charts, 
segmenting the data by occupancy or pre-and post-dates. Furthermore, since ECAM 
automatically recognizes different daytypes, the data can be easily segmented by daytype as 
well. Since the charts automatically update when filtered by these various categorical variables, 
or the data plotted separately by category, users can quickly ascertain which continuous and 
categorical variables appear important. This is a start to developing and validating the model(s). 

The inclusion of the load duration charts facilitates the extrapolation of monitoring periods of 
less than one year to annual energy use or savings. Note that this feature is also very useful when 
following the BPA End-Use Metering Protocol. 

For interval meter data, ECAM includes a very useful utility to transform the data as it often 
comes from utilities – a tabular format with the date down the rows and times across columns – 
into a list of time series data needed for further processing and charting. 

Another feature is the support for proxy variables. ECAM also automatically creates the 
additional fields, based on available point types, shown in Table 7-1. 

In addition to these points that are created automatically, users can create their own calculated 
point and have them available with all the other ECAM features. 

ECAM supports energy modeling M&V approaches for sub-hourly, hourly, daily or monthly 
energy use data. It enables the user to develop and assess baseline energy use models using 
goodness of fit metrics and estimates of savings uncertainty. When post-installation data is 

http://www.sbwconsulting.com/ecam
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available, it supports estimation of avoided energy use and normalized savings, also providing 
estimates of savings uncertainty. 

Since ECAM is Excel-based, all of the normal Excel functions for regression and statistics are 
available. If only simple linear or polynomial models are needed, ECAM can provide most of the 
necessary capabilities for energy modeling.  

Table 7-1: Fields Created Automatically by ECAM, Based on Available Data 

Field Data Source 

Equipment Status Demand (kW) or current (amps) when status point is not available 

Demand (kW) Current (amps) as an approximate calculation when a power point is not 
available 

Chilled water tons A consistent set of flows and temperatures, whenever they are available 

Watts per square foot All electrical demand points that are available whenever a building square 
footage is entered 

CFM per square foot All airflow points that are available whenever a building square footage is 
entered 

kW per ton All related points 

GPM per ton All related points 

7.3. Universal Translator, Version 3 
The Universal Translator (UT) is a free application designed for the management and analysis of 
data from loggers and trend data from building management systems. UT seamlessly handles 
large quantities of data since it is based on the desktop version of Microsoft SQL Server. The 
application is distributed through the UTOnline.org website. It has recently been updated to 
version 3 (UT3) to allow users to develop analysis modules. Through a California Energy 
Commission funded project, an M&V analysis module has been added. This M&V analysis 
module uses a temperature-and-time-of-week (TTOW) energy modeling algorithm developed by 
Lawrence Berkeley National Laboratory (LBNL). 

7.3.1. Significant Features for Energy Modeling and M&V 
UT3 is a premier tool for resampling data to synchronize time stamps, and merging and 
synchronizing multiple data streams. It is capable of taking multiple files, from multiple sources, 
with different time intervals, and synchronizing the time stamps and data through interpolation. 
It also provides the capability to adjust for calibration issues. If you have significant quantities of 
data that needs to be synchronized, UT3 makes it painless. 

UT3 also facilitates charting, creating standard time-series and scatter charts. There is an 
excellent capability to zoom into time series charts. UT3 also makes it easy to add and subtract 
points from a chart. Users can create data filters and schedules, and can create calculated points. 
UT3 also provides linear and polynomial regression capability. UT3 has many other useful 
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features and is extremely flexible, making it possible to handle most needed data manipulation 
tasks. 

Once data is prepared within UT3, its M&V analysis module is available to estimate savings 
using an energy modeling approach. The M&V analysis module accepts sub-weekly time 
interval data, such as daily or hourly intervals, but not monthly energy use data. The M&V 
analysis module enables users to access the prepared data files, develop and assess baseline and 
post-installation period models, estimate avoided energy use for the post-installation period, and 
estimate normalized savings.  

The M&V analysis module enables users to select from a menu of different modeling 
approaches, including models with both a time-of-week and temperature dependence, a time-
only dependence, and a temperature-only dependence. It enables users to characterize the 
temperature relationship in different ways as well. It provides diagnostic charts, including time-
series charts, and scatter plots of residuals. It enables users to set up scheduling filters to account 
for different building operation schedules. It runs sub-models for each filtered bin, and assembles 
each sub-model into complete baseline or post-installation models. As models are developed, it 
displays the charts and the goodness of fit metrics CV(RMSE) and RP

2
P, so that users may 

determine whether the model meets their criteria. 

7.4. Energy Explorer 
Energy Explorer is a Windows-based tool for the analysis of building and facility energy use 
data. The application is available for purchase from J. Kelly Kissock, PhD., Professor and Chair, 
Department of Mechanical and Aerospace Engineering / Renewable and Clean Energy, 
University of Dayton through his website37T. 

7.4.1. Significant Features for Energy Modeling 
Energy Explorer provides most of the capabilities needed for creating regression models for 
M&V. Its greatest strength is the ASHRAE RP-1050 change-point models. (Dr. Kissock was the 
primary investigator for ASHRAE RP-1050.) In addition, Energy Explorer makes it fairly easy 
to group data for different categories and to calculate savings, including the uncertainty of 
savings.  

It includes animation capability, plus histograms of the y-variable data. The regression model 
equation cannot be copied, but must be manually transcribed for use in other applications, such 
as for annualization of energy use and savings. 

7.5. M&V 2.0 
Automated M&V, or M&V 2.0, is a popular discussion topic among M&V practitioners. There 
are many possible definitions, but in general M&V 2.0 refers to using software and advanced 
modeling techniques to largely automate Whole Building Energy Modeling – typically with 
high-frequency reads from the utility revenue meter (daily, hourly, or sub-hourly). M&V 2.0 also 
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often refers to frequent reporting of savings – perhaps on a weekly or monthly basis throughout 
the reporting period.  

Most of the same principles that apply to analysis of a single ECM apply to these advanced 
platforms. The accuracy and precision of the model estimates are still predominantly a function 
of the signal-to-noise ratio and the coverage of the range of independent variables in the baseline 
period. Advanced methods offer significant opportunities to automate and codify many of the 
data exploration and management steps, which can lead to improved efficiency and reduce 
reliance on individual judgement. Improved computing power has enabled powerful estimation 
approaches that are not closed-form solutions like OLS, and instead iterate to convergence.  

An advanced modeling process is no substitution for an understanding of the energy drivers 
within a facility. The most important factor in a quality energy model is obtaining the right 
independent variables that explain the variation in energy consumption. When weather is not the 
primary independent variable, the automation advantage is often lost because it is necessary for 
an analyst to interact with a facility contact to gather the key operating parameters. In facilities 
with Energy Management Systems that trend key non-weather parameters, it may be possible to 
still largely automate the data exchange and analysis once the key independent variables are 
established. Automated M&V can also overlook NREs, especially if NREs occur in the baseline 
period. 

7.6. Other Software Programs 
Searching the web, one can find other programs that provide capabilities that may be useful for 
M&V. Most programs available for purchase don’t provide significant capabilities beyond what 
are available with ECAM and UT, and there are few, if any, available applications that provide 
change-point modeling capability such as Energy Explorer and ECAM. 

One additional programs that overlap with UT and ECAM: 

 Interval Data Analysis Toolkit (IDAT): A Microsoft Foxpro application developed by 
Richard Stroh of BPA with the ability to import, manage, and resample data files. Its 
resampling routine is very fast. IDAT also provides a number of ways of visualizing data, 
including pan and zoom capabilities. 

Data management, charting, and modeling for M&V can also be conducted in statistical software 
packages like SAS, Stata, Python, and R. R and Python are open-source packages that are free 
for download. SAS and Stata are available for purchase. These statistical packages offer many 
powerful tools that can applied to M&V, but the learning curve can be steep, especially for 
practitioners who don’t use the Energy Modeling Protocol frequently. There are also R and 
Python packages containing energy modeling algorithms free for download such as Open EE 
Meter’s CalTRACK package on Github.  
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8. Examples  

8.1. Verification by Energy Modeling Example #1: Whole-
Building Approach 

The following example illustrates how to apply the Energy Modeling Protocol using a whole 
building approach to determine avoided energy use and normalized energy savings. Since it is a 
whole-building approach, it would be considered IPMVP Option C. The project analysis models 
electricity consumption as a function of ambient dry bulb temperature (F) using a four-parameter 
‘4P’ linear change point model. 

8.1.1. Introduction 
The HVAC controls upgrade project was implemented in a five-story 125,000 square foot 
medical office building located outside of Eugene, Oregon. The facility operates Monday to 
Friday from approximately 6am to 9pm and is unoccupied on weekends and holidays. The 
HVAC system consists of five rooftop units (RTUs) and air handler units (AHUs) – each 
dedicated to a floor of the building. There were variable air volume (VAV) boxes serving each 
zone and a Trane building management system monitors temperature, pressure setpoints, and 
other operating parameters. 

In fall 2016, a controls upgrade project was implemented including the following measures: 

 Employ a seasonal outside air temperature reset of the AHU discharge air temperature 
setpoints from 55° to 65°  

 Employ a duct static pressure reset upon VAV load demand to reduce fan speed at low 
loading conditions 

 Create occupied/unoccupied schedules for each tenant area and implement unoccupied 
setback schedules of 65° (winter) and 82° (summer) 

 Retro commissioning of rooftop HVAC equipment 

 Review and correct issues with dampers, actuators, and sensors  

The controls upgrades were implemented from September 2016 to February 2017. In the 12 
billing periods (366 days) prior to project implantation, the facility used 4,478,900 kWh. The 
identified upgrades were projected to save at least 15% of the whole-building electric 
consumption.  

8.1.2. Baseline Period 
The measurement boundary for the project is the entire facility served by the electric meter. The 
baseline period was defined as the twelve most recent electric billing cycles prior to the 
implementation of the controls upgrade project. Figure 8-1 shows the average daily electric 
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consumption and average outdoor temperature for each of the twelve billing periods. Electric 
consumption is highest during the winter months when average outdoor temperatures are lowest 
and during the summer when temperatures are warm.  

Figure 8-1: Baseline Period Electric Consumption and Outdoor Temperature 

 

The Verification by Energy Modeling protocol was selected from the project for several reasons: 

1. Pre-existing building conditions were the appropriate baseline for the savings calculation. 

2. The project included multiple ECMs which interact with one another, making standalone 
engineering calculations challenging and cost-prohibitive. 

3. The signal-to-noise ratio is good. The observed variation in historic electric consumption 
in the facility is largely explained by weather conditions and the project was expected to 
achieve a large reduction in the overall building consumption.   

4. Good coverage of normal weather conditions. Figure 8-2 plots the baseline period 
average daily energy consumption against ambient weather conditions and includes two 
vertical green lines for the most extreme weather months in the TMY3 weather file for 
Eugene, OregonP24F

25
P. The baseline period includes observations that provide coverage of 

both ends of the range of normal weather conditions expected for the facility. This means 
the regression model will not be required to extrapolate estimates of consumption outside 
of the range of weather conditions it was fitted upon. 

 

                                                 
25 https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/data/tmy3/726930TYA.CSV  

https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/data/tmy3/726930TYA.CSV
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Figure 8-2: Scatterplot of Daily Energy Use vs. Temperature with TMY3 Extremes - Baseline 

 

Figure 8-2 shows a clear linear trend below 55°. As weather conditions become increasingly 
cold, the electric consumption of the building increases. This is expected with electric heating 
elements used to heat the building during morning warmup. The relationship between energy use 
and weather is a bit noisier above 55°, but shows a clear positive correlation between 
temperature and energy use.  

Based on visual inspection of the data in ECAM and testing of model fit for each integer change 
point from 50° to 60°, the BPA engineer selected a four parameter (4p) model with a change 
point of 56°. Figure 8-3 shows the fitted trend on top of a scatterplot of the raw data.  
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Figure 8-3: 4P Model – Baseline Period 

 

A key step in the Verification by Energy Modeling protocol is an analysis of the residuals to 
confirm that none of the key assumptions of OLS regression are violated. Residuals are model 
errors calculated as the difference between the actual value minus the predicted value. Figure 8-4 
presents the output of key checks. 

Figure 8-4: Analysis of Residuals 
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Based on a visual inspection of the charts in Figure 8-4, we see that: 

 The residuals are approximately normally distributed with a mean of zero. With monthly 
data the limited number of observations can make histogram plots challenging. 

 There is no distinct trend in residuals vs. the independent variable. The size of the 
residuals increases at warmer temperatures, but there is no directional trend. There is 
more noise in the data at warmer temperatures. 

 There is a directional trend in residuals over time. The model tends to over-predict early 
in the baseline period and under-predict late in the baseline period. The extent of the time 
trend was determined to be acceptable by the BPA engineer. 

 Autocorrelation does not appear to be a major issue. The two largest (negative) residuals 
occur during the first two billing periods of the baseline period, but subsequent residuals 
are not overly correlated with the residuals from the prior billing period. 

M&V Plan 

The M&V plan for this project called for execution of the Verification by Energy Modeling 
Protocol by a BPA engineer with the coordination of the electric utility and the facility (if 
needed). The M&V plan also called for: 

 A regression analysis, using the software Energy Charting and Metrics (ECAM) tool, of 
whole building utility billed energy data as a function of actual local weather data.  

 Pre/post regression curves to be normalized using long‐term average weather based on 
TMY3 data for Eugene, Oregon.  

 A post‐project performance period of 6‐ 9 mont hs, which was anticipated to provide 
statistical results of less than 50% fractional savings uncertainty at the 80% confidence 
level. 

 The M&V plan noted that if more than 50% FSU was observed, the performance period 
would be extended until results showed a level of statistical significance deemed 
appropriate by the reviewing BPA engineer.  

 The M&V plan discussed an understanding with the participant that no deemed measures 
(i.e. lighting, computer network management, etc.) would be implemented until the 6‐9  
months of post‐project data collection is complete. If any deemed measures were 
installed, the M&V plan states that the deemed energy savings will be subtracted from 
the whole building energy savings to determine the 'net' savings specifically from the 
measures in this HVAC controls upgrade project.  
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8.1.3. Reporting Period 
Six billing cycles were excluded from the HVAC controls upgrade project analysis. This was the 
period of time during which changes were being made, so the operation of the building was 
neither in the baseline state or the post-period. The reporting period for the HVAC controls 
project was ten billing periods and included weather and electric consumption from February 17, 
2017 to December 19, 2017. Figure 8-5 is a scatterplot of the average daily kWh consumption of 
the facility against the average daily temperature for the ten billing cycles in the reporting period. 
The vertical green lines represent the average temperature for the most extreme calendar months 
in the TMY3 weather file for Eugene, Oregon. Like the baseline period, the reporting period 
shows good coverage of the expected range of weather conditions. 

Figure 8-5: Scatterplot of Daily Energy Use vs. Temperature with TMY3 Extremes - Reporting 

 

As shown in Figure 8-5, one of the billing periods in the reporting period was flagged by the 
BPA engineer as a potential outlier. Discussions with the site contact revealed that several 
mobile medical trailers were located at the facility during this period and that the electric service 
for those temporary units was provided through the primary facility meter used in the analysis. 
The BPA engineer determined that this situation was a non-routine event and excluded the 
billing period from the analysis. This outlier observation was the first billing cycle of the 
reporting period.  

Avoided Energy Use 

The avoided energy use approach involves using the regression model fitted from the baseline 
period to predict what energy use would have been in the reporting period absent the energy 
conservation project. Table 8-1 illustrates the calculation. The fractional savings is the avoided 
energy use divided by the predicted consumption using the baseline model and is equal to 37.7%. 
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Table 8-1: Avoided Energy Use Calculation 

Meter Read 
Date 

Average 
Temp in 

Period (F) 
Billed kWh Days in 

Period Daily kWh Predicted 
Daily kWh 

Avoided 
Energy Use 

(kWh) 

4/18/2017 49.28 223,080 29 7,692.4 12,169.3 129,829 
5/18/2017 53.40 218,240 30 7,274.7 11,457.4 125,481 
6/19/2017 60.66 238,040 32 7,438.8 11,624.9 133,955 
7/19/2017 66.17 235,400 30 7,846.7 12,354.2 135,225 
8/18/2017 70.73 293,040 30 9,768.0 12,958.6 95,717 
9/19/2017 67.81 267,080 32 8,346.3 12,572.0 135,224 

10/18/2017 54.34 222,200 29 7,662.1 11,294.3 105,334 
11/17/2017 49.27 233,200 30 7,773.3 12,170.9 131,926 
12/19/2017 40.31 283,624 32 8,863.3 13,716.5 155,303 

Total 274 2,213,904 3,361,899 1,147,995 

Based on the analysis of the residuals shown in Figure 8-4, the uncertainty calculations for this 
project can utilize formulas from Section 5.5.1 (Models with Uncorrelated Residuals). 

 FSU = 𝑡𝑡 ∗
1.26∗𝐶𝐶𝐶𝐶∗��1+2𝑛𝑛�∗

1
𝑚𝑚

𝐹𝐹
 

where: CV = the coefficient of variation of the root mean squared error CV(RMSE) 

For the avoided energy use approach at the 80% confidence level, the values are shown in Table 
8-2. 

Table 8-2: Uncertainty Calculations for Avoided Energy Use 

Parameter Definition Value 

t Student’s t-statistic 1.397 

n Number of points in the baseline period 12 

m Number of points in the post period 9 

p Number of parameters in the model 4 

F Savings Fraction  0.3415 

CV(RMSE) Coefficient of variation of the root mean squared error 2.23% 

The FSU for the avoided energy use calculation is ± 4.13% at the 80% confidence level. This is 
comfortably below the 50% threshold identified in the M&V plan. FSU is a ratio of uncertainty 
to savings. Because the savings fraction (F) is in the denominator of the FSU calculation, the 
large savings as a percent of whole-building electric consumption leads to a small estimated 
FSU.  
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8.1.4. Normalized Savings  
Unlike the avoided energy use approach, a normalized savings approach involves creating a 
second regression model to identify the mathematical relationship between energy consumption 
and the independent variable(s) during the reporting period. The regression models for both the 
baseline and reporting periods are then used to estimate the normalized annual consumption for 
the facility under the same conditions. In this example, the independent variable in the model is 
weather so the fixed conditions were TMY3 weather conditions for Eugene, Oregon. 

Because a separate regression model is developed for the reporting period, the coverage of the 
range of independent variable(s) must be considered. Figure 8-5 showed that the coverage of 
temperature conditions in the reporting period was excellent (e.g. the reporting period included 
intervals as cold and as warm as expected in the fixed condition TMY3 assumptions). 

When using a normalized savings approach, the same general model specification will typically 
be used for the baseline and reporting periods. The two models will typically have the same 
dependent and independent variable(s) unless additional explanatory variables are available for 
the reporting period that were not collected for the baseline period. In the case of weather change 
point modeling, analysts will sometimes find it beneficial to the model fit statistics to use a 
different change point in the baseline and reporting period models. This is especially true if the 
installed measures change the operating profile of the facility with respect to setpoints. That was 
the case for the HVAC controls upgrade project analysis. Figure 8-6 shows the temperature 
change point used by the BPA engineer in the baseline and reporting period model. The change 
point in the reporting period was 3° higher.  

Figure 8-6: Baseline and Reporting Period Scatter Plots with Change Points 
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Table 8-3 shows the calculation of weather-normalized annual savings for the project. The (4P) 
linear change-point models developed for the baseline and reporting periods were used to predict 
the daily electric consumption of the facility. The predicted daily consumption is multiplied by 
the number of days in the month and summed across the twelve months. The savings fraction is 
equal to the normalized kWh savings divided by the normalized baseline model prediction, or 
35.4%.   

Table 8-3: Normalized Savings Calculation Table 

Month 
Average 

Temperature in 
TMY3 File (F) 

Days In Period kWh Use Baseline 
Model 

kWh Use 
Reporting 

Model 
kWh Savings 

January 41.82 31 417,119 267,398 149,721 

February 40.70 28 382,195 244,807 137,388 
March 45.85 31 395,568 254,386 141,182 
April 49.88 30 361,943 233,582 128,361 
May 56.15 31 341,901 221,099 120,802 
June 60.50 30 348,128 214,421 133,707 
July 66.40 31 383,942 259,560 124,381 

August 67.48 31 388,375 266,518 121,857 
September 61.46 30 351,922 220,375 131,547 

October 52.83 31 358,251 231,854 126,397 
November 42.90 30 398,077 255,399 142,678 
December 39.83 31 427,803 273,850 153,954 

Total 365 4,555,224 2,943,249 1,611,975 

As discussed in Section 5.9, the uncertainty of a normalized savings estimate is calculated by 
combining the uncertainty estimates (in kWh) of the baseline and reporting period model in 
quadrature. Table 8-4 shows the inputs and results of the calculation for the HVAC controls 
upgrade project. 

Table 8-4: Uncertainty Calculations Normalized Savings 

Parameter ΔERbase ΔERpost ΔERsave 

Annual kWh 4,555,224 2,943,249 1,611,975 
t-statistic (80% confidence) 1.397 1.476  

n 12 9  
m 12 12  
p 4 4  

Sum of Squares of Residuals 595,734 816,945  

CV(RMSE) 2.19 5.01  
Uncertainty (% of Annual kWh) 1.20 2.97 2.27% 

Uncertainty (kWh) 54,633 87,544 103,193 
Fractional Savings Uncertainty   6.40% 
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8.2. Verification by Energy Modeling Example #2: Specific 
Building Systems  

The following example illustrates how to apply the Energy Modeling Protocol using a whole 
building approach to determine normalized energy savings. Since it is a whole-building 
approach, it would be considered IPMVP Option C. However, since it uses short-interval data 
and the meters are only measuring specific systems, it is also a good example of a systems 
approach (IPMVP Option B). 

8.2.1. Overview 
Manfred Hall is located near the center of a large university campus. Its floor area is 
approximately 92,300 square feet. It has seven levels, including the basement, that are a mixture 
of labs, office space, and administrative uses. The building houses the anthropology department 
and is approximately 80% lab space.  

Space conditioning at Manfred Hall is delivered by seven air handling units (AHUs); there is one 
unit on each floor (basement through sixth floor). The AHUs provide ventilation, heating, and 
cooling to the interior of the building. The AHUs have single duct fans with preheating and 
cooling coils that are served by the building’s chilled-water and hot-water loops. There are reheat 
coils in the zones that are also served by the building’s hot-water loop and are controlled with 
two-way valves. The building’s hot-water loop is heated in a heat exchanger by campus steam. 
There are two hot-water pumps in the basement that operate lead/lag to circulate water through 
the loop.  

The audit process led to the conclusion that many of the old hot-water valves were leaking, 
wasting heating energy. Cooling energy was also being wasted due to the need to overcool air 
from the AHUs to compensate for the leaking valves. Therefore, a retrofit project was 
implemented that replaced all of the old hot-water valves.  

Because a full year of monitoring before and after the measures are installed was not possible, 
both baseline and post-installation models were developed and normalized to a TMY dataset to 
determine savings.  

8.2.2. M&V Approach 
One electric interval meter, one hot-water calculation monitor, and one chilled-water calculation 
monitor track the whole building energy use at Manfred Hall. An M&V Plan was developed to 
assist with determining the savings from the project. Baseline and post-installation models were 
created for the hot water and chilled water use. The targeted savings for this project was 10% of 
the whole-building electric energy use and 10% of the whole-building hot water and chilled 
water use.  



 

Verification by Energy Modeling Protocol 
82 

M&V Option 

An Option C whole building approach was used for the energy use associated with hot and 
chilled water.  

Measurement Boundary 

The measurement boundary for each affected meter measures the hot-water and chilled-water 
energy flowing into and out of the building. The measurements could include electricity use of 
the building hot-water and chilled-water pumps, but the fractional savings for the electricity use 
of the pumps was too low to be seen on the building electric meter. Since not including 
electricity use resulted in a more conservative savings estimate, this was not a concern. 

Baseline Period 

Baseline period data was collected to develop the baseline energy models. The baseline periods 
for each meter, the analysis time interval, and units are shown in Table 8-5. 

Table 8-5: Baseline Period 

Meter Start Date End Date Interval Unit 

Chilled Water Mar 1, 2010 May 31, 2010 Hours Tons 

Hot Water Mar 1, 2010 May 31, 2010 Hours MBH 

Post-Installation Modeling Period 

After the new valves were installed, post-installation energy use data was collected for the 
chilled- and hot-water meters. Table 8-6 summarizes the post-installation monitoring period. 

Table 8-6: Post-Installation Monitoring Period 

Meter Start Date End Date Interval Unit 

Chilled Water Sep 15, 2010 Nov 29, 2010 Hours Tons 

Hot Water Sep 15, 2010 Nov 29, 2010 Hours MBH 

8.2.3. Energy Modeling 

Baseline Modeling 

For chilled water, an hourly analysis time interval was selected. Daily analysis time intervals did 
not provide enough data points that showed enough variation over the entire temperature range. 
In addition, the baseline period was mainly in the warmer months. An hourly analysis time 
interval was selected in order to obtain data in the cooler nighttime periods, thereby increasing 
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the range of variation in the independent variables. A categorical variable identifying weekdays 
from weekends and holidays was not necessary. 

Similarly, the hot-water meter baseline monitoring period was short, so that an hourly analysis 
time interval was selected.  

Post-Installation Modeling 

The same analysis time interval used for the electric, chilled-water, and hot-water meters 
respectively was used for the post-installation models.  

Figure 8-7, Figure 8-8, and Figure 8-9 show the scatter plots and resulting pre- and post-
installation regression models developed from the data for the chilled water. Figure 8-10, Figure 
8-11, and Figure 8-12 show the scatter plots and resulting pre- and post-regression models 
developed from the data for the hot water.  

Figure 8-7: Chilled Water Data, Pre- and Post-Installation 
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Figure 8-8: Chilled Water Baseline Model 

 

Figure 8-9: Chilled Water Post-Installation Model 
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Figure 8-10: Hot Water Data, Pre- and Post-Installation 

 

Figure 8-11: Hot Water Baseline Model 
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Figure 8-12: Hot Water Post-Installation Model 

 

8.2.4. Annual Savings  
Savings were estimated for each energy source by adjusting both baseline and post-installation 
energy use to TMY conditions. This was done simply by selecting the correct TMY weather file 
for the university climate zone for use in the analysis. For chilled water and hot water energy, the 
hourly TMY data was directly applied to the baseline and post-installation models. For each 
energy source, the annual baseline energy use and the annual post-installation energy use were 
calculated. The annual post-installation use was subtracted from the baseline use to determine 
savings. Results are shown in Table 8-7. 

Table 8-7: Manfred Hall Energy Savings 

Meter Annual  
Baseline Use 

Annual  
Post-Install Use 

Savings Units 

Chilled Water 316,859 200,116 116,742 ton-hrs 

Hot Water 7,294 5,815 1,478 mmBtu 

Note also, that when placed on common units, the chilled water savings is almost identical to the 
hot water savings, as shown in Table 8-8. This makes sense, because for most of the zones in this 
application, reducing the hot-water valve leakage reduces the cooling needed to meet the zone 
set points. 
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Table 8-8: Manfred Hall Energy Savings 

Meter Annual  
Baseline Use 

Annual  
Post-Install Use 

Savings Units 

Chilled Water 3,802 2,401 1,401 mmBtu 

Hot Water 7,294 5,815 1,478 mmBtu 

Plotting the measured data with the baseline model on a chart, as in Figure 8-13 and Figure 8-14, 
provides conclusive evidence that the valve replacements are saving energy. 

Figure 8-13: Chilled Water Savings Resulting from Valve Replacements at Manfred Hall 
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Figure 8-14: Hot Water Savings Resulting from Valve Replacements at Manfred Hall  
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