

BP-20 Rate Case Workshop: Generation Inputs Update

August 22, 2018

Agenda

- Updated Balancing Reserve Capacity Forecast
- Balancing Reserves Costs
- Preliminary ACS Rates

Gen Input Rates Overview and Assumptions

- BPA is sharing revised estimates of the ACS gen inputs rates based on updated information and analyses.
- The balancing reserve forecast presented today has been updated and corrected for errors.
 - The same balancing reserves forecast and allocation methodology has been used and applied since BP-12.
 - Initial estimates of the balancing reserves forecast for BP-20 were presented at the May 30, 2018 workshop.
- The unit cost methodology was first presented at the April 24, 2018 workshop and information was updated for this presentation.
 - This preliminary unit cost reflects IPR initial proposal numbers.
- The Transmission rates model can be found at the BP-20 meetings and workshop website, under the August 8 rate case workshop.

Updated Balancing Reserve Capacity Forecast

Libby Kirby, TOOC Frank Puyleart, TOOC

Forecasted Generation Profile (MW of Installed Capacity)

Month	Wind	Solar	DERs	CGS	Hydro
Oct '19	2767	148	1608	1230	2527
•••	•••	•••	•••		•••
Jun '20	2967	148	1608	1230	2527
•••	•••	•••	•••	•••	•••
Sept '20	2967	248	1608	1230	2527
Oct '20	3269	268	1608	1230	2527
		•••			
Apr '21	3269	361	1608	1230	2527
		•••			
Sept '21	3473	361	1608	1230	2527

Total INC Reserve Capacity by Type (MW of Balancing Reserves)

Month	Total	Load	Wind	Solar	FCRPS	DERs
Oct '19	688	258	387	19	15	8
•••	•••	•••	•••	•••	•••	•••
Jun '20	722	259	420	19	15	8
•••						
Sept '20	730	257	417	35	14	8
Oct '20	774	258	457	38	14	8
•••	•••				•••	
Apr '21	783	254	449	59	14	8
		•••				
Sept '21	798	254	464	59	14	8

Note: FCRPS and DERs numbers inadvertently swapped in May presentation

August 22, 2018

Total DEC Reserve Capacity by Type (MW of Balancing Reserves)

Month	Total	Load	Wind	Solar	FCRPS	DERs
Oct '19	-833	-289	-493	-23	-19	-10
•••	•••	•••	•••		•••	
Jun '20	-880	-290	-539	-23	-19	-10
•••	•••					
Sept '20	-872	-284	-519	-43	-17	-9
Oct '20	-946	-287	-585	-47	-17	-9
Apr '21	-942	-279	-564	-74	-16	-8
Sept '21	-963	-279	-585	-74	-17	-8

Note: FCRPS and DERs numbers inadvertently swapped in May presentation

August 22, 2018

Balancing Reserves Costs

Jarek Hunger, PSR

Refresher on Proposed Methodology

The embedded cost is calculated by dividing identified capacity costs by the one hour maximum FCRPS capacity (in 1937 water conditions).

This embedded cost is then added to the unit variable costs to produce reserve unit costs.

These unit costs are multiplied by the amount of needed capacity forecasted by Transmission in order to determine the total balancing reserves costs that will be recovered by Transmission.

Changes from April Workshop

- 1. One Hour Maximum FCRPS Capacity has increased from 13,503 MW to 14,465 MW. This is due to changes in the hydro forecasts and reserve forecasts and is consistent with the RHWM Final Outputs.
- 2. Forecast Reserve Quantities increased from 1,088 MW to 1,206 MW.
- 3. The allocated costs have decreased (overall) from \$1.145B to \$1.038B as a result of forecasted spending reductions and the exclusion of Tier 2 costs (since we don't expect to make a purchase based on preliminary analyses).
- 4. Market Price forecast has decreased, reducing the variable costs output from the GARD Model.

Changes from April Workshop

April Forecast

Embedded Cost: \$7.07/kW-mo Reserve Total Costs:

Updated Forecast

Embedded Cost: \$5.98/kW-mo Reserve Total Costs:

	Unit					Unit		
Results	Cost	Quantity		Revenues	Results	Cost	Quantity	Revenues
Regulating Reserves inc	\$8.60	115	\$	11,830,000	Regulating Reserves inc	\$7.37	126	\$ 11,160,000
Regulating Reserves dec	\$0.62	114	\$	840,000	Regulating Reserves dec	\$0.55	126	\$ 830,000
Following Reserves inc	\$8.20	273	\$	26,810,000	Following Reserves inc	\$7.04	289	\$ 24,410,000
Following Reserves dec	\$0.62	276	\$	2,040,000	Following Reserves dec	\$0.55	300	\$ 1,970,000
Imbalance Reserves inc	\$7.83	246	\$	23,150,000	Imbalance Reserves inc	\$6.76	325	\$ 26,330,000
Imbalance Reserves dec	\$0.62	377	\$	2,780,000	Imbalance Reserves dec	\$0.55	471	\$ 3,100,000
Operating Reserves - Spinning	\$8.55	227	\$	23,300,000	Operating Reserves - Spinning	\$7.29	233	\$ 20,410,000
Operating Reserves - Supplimental	\$7.07	227	\$	19,270,000	Operating Reserves - Supplimental	\$5.98	233	\$ 16,740,000
Total		1088	\$	110,030,000	Total		1206	\$ 104,960,000
Weighted Average Cost of Operating Reserve		S	\$7.81		Weighted Average Cost of Operating Reserves		S	\$6.64
Weighted Average Cost of Balancing I	s		\$8.87	Weighted Average Cost of Balancing Reserves			\$7.64	
Weighted Average Cost of All Reserve	es			\$8.43	Weighted Average Cost of All Reserve	es		\$7.25

Changes from April Workshop

April Forecast

Updated Forecast

Reserve Revenue to Power	\$ 110,000,000
Other Generation Inputs	\$ 12,900,000
Fed Hydro CGS Balancing Cost	\$ (1,600,000)
Net Revenue Credit to Power	\$ 121,400,000

Reserve Revenue to Power	\$ 105,000,000
Other Generation Inputs	\$ 12,900,000
Fed Hydro CGS Balancing Cost	\$ (1,300,000)
Net Revenue Credit to Power	\$ 116,600,000

Preliminary ACS Rates

Rebecca Fredrickson, TSQR Mike Linn, TSQR

Summary of Observations

- Load balancing reserve capacity costs that are currently included in the PF Tier 1 rate are now proposed to be recovered in the Transmission Regulation and Frequency Response (RFR) rate for BP-20 as discussed at the April 24, 2018 workshop.
- The VERBS wind rates are decreasing slightly due to diversity, and increasing amounts of solar generation forecast for the BP-20 rate period.
- The DERBS rates are decreasing by over 30% due to thermal plants leaving the BAA and increasing solar generation.
- The Operating Reserves rates are decreasing by 14% due to increasing solar generation.
- The Solar rate is increasing over 300% due to the following:
 - Solar is becoming more prominent
 - Solar generation is locating in one area
 - BAL tight control increases the amount of reserves needed overall

Summary of Gen Input Rates

			BP20				Pre	liminary
Gen Inputs Product	Units	BP18	Preliminary	/ % Change	Qty Unit	Qty	Reve	nue (\$000)
RFR								
Regulation and Frequency Response	mills/kWh	0.13	0.46	254%	aMW	5,881	\$	23,729
VERBS								
VERBS 30/60	\$/kW-mo	1.010	0.967	-4%	Nameplate	1,403	\$	16,280
VERBS 30/15	\$/kW-mo	0.710	0.666	-6%	Nameplate	35	\$	280
VERBS Uncommitted	\$/kW-mo	1.220	1.148	-6%	Nameplate	1,622	\$	22,342
VERBS Solar Hourly	\$/kW-mo	0.280	1.124	301%	Nameplate	236	\$	3,178
VERBS Solar 15-minute	\$/kW-mo	0.210						
DERBS								
					Monthly MW max			
Hourly rate inc	mills/kW-mo	20.42	13.33	-35%	hrly deviation	4,159	\$	665
					Monthly MW max			
Hourly rate dec	mills/kW-mo	3.43	1.34	-61%	hrly deviation	3,758	\$	60
OR								
Spinning reserves	mills/kWh	11.98	9.97	-17%	aMW	233	\$	20,377
Default rate	mills/kWh	13.78	11.47	-17%				
Supplemental reserves	mills/kWh	9.92	8.18	-18%	aMW	233	\$	16,719
Default rate	mills/kWh	11.41	9.41	-18%				

Gen Inputs Total

\$ 103,631

* Gen Inputs Total recovered by transmission does not match balancing cost total on slide 14 because it does not include Fed Hydro CGS Balancing costs (see slide 15).

Gen Inputs Rates Table 10.4

Table 10.4 - Calculation of Generation Inputs Rates

		Unit	c	Costs		ntity	Rate
1	Reserve Costs					-	
2	Regulating Reserves inc	\$/kW-mo	\$	7.37			
3	Regulating Reserves dec	\$/kW-mo	\$	0.55			
4	Following Reserves inc	\$/kW-mo	\$	7.04			
5	Following Reserves dec	\$/kW-mo	\$	0.55			
6	Imbalance Reserves inc	\$/kW-mo	\$	6.76			
7	Imbalance Reserves dec	\$/kW-mo	\$	0.55			
8	Operating Reserves - Spinning	\$/kW-mo	\$	7.29			
9	Operating Reserves - Supplemental	\$/kW-mo	\$	5.98			
10							
11	Balancing Reserve INC Amounts				inc	dec	
12	DERBS Reg	aMW			3	-3	
13	DERBS Follow	aMW			2	-2	
14	DERBS Imbalance	aMW			3	-4	
15	Solar 30/15 Reg	aMW					
16	Solar 30/15 Follow	aMW					
17	Solar 30/15 Imbalance	aMW					
18	Solar 30/60 Reg	aMW					
19	Solar 30/60 Follow	aMW					
20	Solar 30/60 Imbalance	aMW					
21	Solar Matrix Reg	aMW			6	-6	
22	Solar Matrix Follow	aMW			10	-10	
23	Solar Matrix Imbalance	aMW			18	-26	
24	Wind 30/15 Reg	aMW			1	-1	
25	Wind 30/15 Follow	aMW			2	-2	
26	Wind 30/15 Imbalance	aMW			1	-2	
27	Wind 30/60 Reg	aMW			20	-20	
28	Wind 30/60 Follow	aMW			63	-66	
29	Wind 30/60 Imbalance	aMW			94	-142	
30	Wind Uncommitted Reg	aMW			23	-23	
31	Wind Uncommitted Follow	aMW			73	-75	
32	Wind Uncommitted Imbalance	aMW			149	-211	
33	Load Reg	aMW			68	-68	
34	Load Follow	aMW			137	-142	
35	Load Imbalance	aMW			52	-76	
36							
37	Operating Reserve Amounts						
38	Operating Reserves - Spinning	aMW			233		
39	Operating Reserves - Supplemental	aMW			233		
40							

Continued: Gen Inputs Table 10.4

41	Regulation and Frequency Response Rate C	alculation			
42	RFR Reg Allocated Costs	\$000	\$ 6.487		
43	RFR Follow Allocated Costs	\$000	\$ 12,492		
44	RFR Imbalance Allocated Costs	\$000	\$ 4,729		
45	RFR Forecast Quantity	aMW		5,881	
46	RFR Rate	mills/kWh			\$ 0.46
47					
48	VERBS Rate Calculation				
49	Rate For Wind Committed to 30/15 Scheduling:				
50	Wind 30/15 Reg Allocated Costs	\$000	\$ 48		
51	Wind 30/15 Following Allocated Costs	\$000	\$ 144		
52	Wind 30/15 Imbalance Allocated Costs	\$000	\$ 88		
53	Wind 30/15 Installed Nameplate	MW Nameplate		35	
54	Wind 30/15 Reg Rate	\$/kW-mo			\$ 0.11
55	Wind 30/15 Following Rate	\$/kW-mo			\$ 0.34
56	Wind 30/15 Imbalance Rate	\$/kW-mo			\$ 0.21
57					
58	Rate For Wind Committed to 30/60 Scheduling:				
59	Wind 30/60 Reg Allocated Costs	\$000	\$ 1,920		
60	Wind 30/60 Following Allocated Costs	\$000	\$ 5,780		
61	Wind 30/60 Imbalance Allocated Costs	\$000	\$ 8,588		
62	Wind 30/60 Installed Nameplate	MW Nameplate		1403	
63	Wind 30/60 Reg Rate	\$/kW-mo			\$ 0.11
64	Wind 30/60 Following Rate	\$/kW-mo			\$ 0.34
65	Wind 30/60 Imbalance Rate	\$/kW-mo			\$ 0.51
66					
67	Rate For Wind With Uncommitted Scheduling:				
68	Wind Uncommitted Reg Allocated Costs	\$000	\$ 2,208		
69	Wind Uncommitted Following Allocated Costs	\$000	\$ 6,634		
70	Wind Uncommitted Imbalance Allocated Costs	\$000	\$ 13,502		
71	Wind Uncommitted Installed Nameplate	MW Nameplate		1622	
72	Wind Uncommitted Reg Rate	\$/kW-mo			\$ 0.11
73	Wind Uncommitted Following Rate	\$/kW-mo			\$ 0.34
74	Wind Uncommitted Imbalance Rate	\$/kW-mo			\$ 0.69
75					
76	Rate for Solar:				
77	Solar Matrix Reg Allocated Costs	\$000	\$ 595		
78	Solar Matrix Following Allocated Costs	\$000	\$ 914		
79	Solar Matrix Imbalance Allocated Costs	\$000	\$ 1,671		
80	Solar Matrix Installed Nameplate	MW Nameplate		236	
81	Solar Matrix Reg Rate	\$/kW-mo			\$ 0.21
82	Solar Matrix Following Rate	\$/kW-mo			\$ 0.32
83	Solar Matrix Imbalance Rate	\$/kW-mo			\$ 0.59
84					
85	DERBS Rate Calculation				
86	DERBS inc Costs	\$000	\$ 665		
87	DERBS dec Costs	\$000	\$ 60		
88	Derbs inc Forecast Quantity	Monthly MW max hrly deviation		4159	
89	Derbs dec Forecast Quantity	Monthly MW max hrly deviation		3758	
90	DERBS inc Rate	mills/kWh			\$ 13.33
91	DERBS dec Rate	mills/kWh			\$ 1.34
92					
93	Operating Reserve Amounts				
94	Spinning Reserve Allocated Costs	\$000	\$ 20,387		
95	Spinning Reserve Forecasted Quantity	aMW		233	
96	Spinning Reserves Rate	mills/kWh			\$ 9.97
97	Default Rate	mills/kWh			\$ 11.47
98	Supplemental Reserve Allocated Costs	\$000	\$ 16,725		
99	Supplemental Reserve Forecasted Quantity	aMW		233	
100	Supplemental Reserves Rate	mills/kWh			\$ 8.18
101	Detault Rate	mills/kWh			\$ 9.41